
S C I E N C E P A S S I O N T E C H N O L O G Y

Institute for Applied Information Processing and Communications

Graz University of Technology

Claudio Canella

Hardening the Kernel
Against Unprivileged Attacks

PhD Thesis

Assessors: Daniel Gruss, Frank Piessens

October 2022

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present doctoral thesis.

Date Signature

iii

Abstract

Modern computer systems play a significant role in our everyday life. An
essential part of these systems is the privileged Operating System (OS),
which performs specific tasks for less-privileged applications. However,
these higher privileges make it an interesting target for unprivileged
attackers. Examples of potential threats are microarchitectural and control-
flow-hijacking attacks. With the former, an attacker exploits effects
introduced by the actual hardware implementation of an architecture to
steal data that would normally be inaccessible. By design, these attacks
do not rely on software bugs. With the latter, an attacker exploits a bug
to gain control of an unprivileged application. A subsequent goal can
be to open a remote shell for additional attacks that try to gain higher
privileges or steal data. Typically, this requires the hijacked application
to interact with the OS.

This thesis focuses on hardening the OS against such attacks. We show
that existing defenses against microarchitectural attacks are insufficient
or cause additional security problems. To address the latter, we propose
a new software-based defense that fixes the additional security problem
with no runtime overhead. We then reduce the attack surface the OS
exposes to potentially hijacked applications by restricting their access to
the syscall interface. We first discuss 2 automated solutions to achieve this
restriction. Our first solution solely restricts access based on whether the
application requires the syscall. The second solution more strictly restricts
access by checking whether the syscall is part of a pre-determined sequence
and originates from the correct syscall instruction. Finally, we propose
a concept that allows restricting syscalls based on complex arguments,
e.g., strings, which is impossible with state-of-the-art solutions due to
time-of-check-time-of-use vulnerabilities.

The first part of this thesis discusses its contributions and provides
the necessary background. It also discusses the current state-of-the-art
of software-based microarchitectural attacks and control-flow-hijacking
attacks and defenses. The second part consists of a selection of my
publications.

v

Acknowledgments

First and foremost, I would like to thank my advisor Daniel Gruss for
introducing me to the field of microarchitectural attacks and giving me
the opportunity to pursue a PhD. Without your help, I would not be as
confident as I am now when it comes to presenting my work.

Similarly, I want to thank Michael Schwarz for helping me throughout
my PhD, for providing ideas at the start, and for the continuous support
afterward when I pitched a new (potentially stupid) idea. I wish you all
the best and a lot of success with your own research group. Your students
can be thankful to have such a supporting supervisor.

I want to thank Frank Piessens for his valuable feedback and for taking
the time and effort to assess my thesis.

During my PhD, I had the chance to work with incredible people at
the institute. I want to thank the other (active and former) members of
the group: Moritz Lipp, Martin Schwarzl, Lukas Giner, Andreas Kogler,
Catherine Easdon, Stefan Gast, and Jonas Juffinger. I also want to thank
all the other members of the institute for a wonderful time, especially
Mario Werner, as I also had the pleasure of working with you on a paper
that is part of this thesis. Special thanks to everyone on the administrative
side of the institute and our sysadmins. You always provided a helping
hand when it was needed. Unfortunately, the pandemic cut short all our
time together in the office. However, we still had a lot of fun in online
meetings, game nights, and the occasional coffee break in the kitchen.
Thanks for the interesting discussions and talks, whether they were related
to work or something else. Without all of you, my PhD would not have
been the same, and I hope the friendships we built last a lifetime.

Over the years, I also had the chance to meet and work with amazing
people from all over the world. I want to thank Jo Van Bulck for his help on
my first research paper. Your knowledge of the field and guidance in writing
the paper has helped me throughout my PhD. Likewise, I want to thank
Daniel Moghimi, Berk Sunar, Khaled Khasawneh, Dmitry Evtyushkin,
and Tianyin Xu for great discussions and fruitful collaborations.

vii

viii

I also owe a debt of gratitude to the students who contributed to
several of my papers. I want to thank Sebastian Dorn, Benjamin von
Berg, Philipp Ortner, and Martin Haubenwallner. Supervising your thesis
and working with you on exciting research projects was a pleasure.

Special thanks is also necessary for the people who first got me inter-
ested in computer science, recognized my talent for it, and supported me
while still at school and beyond. I want to thank Gerhard Lederwasch for
teaching me my first programming language, which ignited a passion that
is still going strong. I also want to thank Christoph Jarosch for all the
exciting discussions about computer science and for furthering my passion
for it. To Christian Gattermair, for teaching me many new things and
supporting me in my pursuit of a job in the industry right after graduating
from school. I would have never pursued a PhD in this field if it were not
for you and your early support.

I want to thank the most important people in my life: my family
and friends. To my mother, Elisabeth Canella, for giving me all the
encouragement, love, and support in the world. You are a true role
model for me. To my father, Alberto Canella, for his continuing support
even when things progressed slowly at times. To my best friends, Marco
Carli and Vanessa Huber, for keeping me sane during all my time at the
university. To my friends, Markus Schofnegger, Roman Walch, and Patrick
Radkohl for listening to me rant when things did not go as planned.

Finally, I want to thank my wonderful girlfriend, Fiona. Even though
we met late in my PhD, your support made this thesis possible. Thanks
for providing a comforting shoulder at the end of a hard day. For your
understanding when I work way too late and do not have as much time
for you as I would like to have.

Table of Contents

Affidavit iii

Abstract v

Acknowledgements vii

I Hardening the Kernel Against Unprivileged Attacks xi

1 Introduction and Contribution 1

1.1 Main Contributions . 3

1.2 Other Contributions . 6

1.3 Outline . 8

2 Background 9

2.1 Operating Systems . 9

2.1.1 Virtual Memory 10

2.1.2 System-Call Interface 12

2.2 Sandboxing and Isolation 12

2.2.1 Intel SGX . 13

2.3 ISA and Microarchitecture 14

2.3.1 Caches . 15

2.3.2 Instruction Pipelining 17

2.3.3 Speculative Execution 19

2.4 Side-Channel and Microarchitectural Attacks 20

2.4.1 Side Channels . 20

2.4.2 Microarchitectural Side-Channel Attacks 21

3 State of the Art 23

3.1 Software-based Microarchitectural Attacks 23

3.1.1 Cache Attacks . 24

3.1.2 TLB Attacks . 29

ix

x Table of Contents

3.1.3 Attacks on Predictors 30
3.1.4 Transient-Execution Attacks 31

3.2 Memory Safety . 35
3.2.1 Control-Flow-Hijacking Attacks 35
3.2.2 Mitigating Control-Flow-Hijacking Attacks 40

4 Conclusion 49

II Publications 79

5 Systematic Evaluation of Attacks and Defenses 81

6 KASLR: Break It, Fix It, Repeat 131

7 Evolution of Transient-Execution Attacks 171

8 Evolution of Transient-Execution Defenses 191

9 Automated Seccomp Filter Generation 213

10 Domain Page-Table Isolation 251

11 Syscall-Flow-Integrity Protection 295

Part I

Hardening the Kernel
Against Unprivileged

Attacks

xi

1
Introduction and Contribution

Computers are an essential part of our everyday life, whether for entertain-
ment, health care, travel, or educational purposes. While the applications
from these categories are developed for different purposes, they have at
least one commonality: they all rely on the more privileged operating
system (OS), i.e., the kernel, to perform specific tasks on their behalf.
These tasks are manifold: creating new processes and threads, managing
the application’s memory, handling input and output, and interacting
with the underlying hardware. This makes the kernel an interesting target
for malicious actors, as subverting it allows them to, for instance, steal or
manipulate the data of every other application. While an attacker can
rely on many different methods to undermine the kernel, we only focus on
two of them: microarchitectural and control-flow-hijacking attacks.

Microarchitectural attacks exploit effects introduced by the actual
implementation (microarchitecture) of an architecture. Typical examples
of such effects are the differences in runtime or the amount of power
consumed. Kocher [165] was the first to mention how caches and their
effect on the runtime can be used to break cryptographic algorithms.
While subsequent works have demonstrated that these effects can be used
to spy on user behavior [122, 182, 209, 313, 341] or break cryptographic
algorithms in various ways [15, 24, 46, 92, 114, 122, 125, 127, 139, 148–150,
235, 239, 327, 328, 340], they also affect the security of the kernel. For
instance, multiple microarchitectural attacks have been demonstrated

1

2 Chapter 1. Introduction and Contribution

that break Kernel Address Space Layout Randomization (KASLR) [50,
53, 85, 118, 134, 155, 163, 170, 181, 183, 184, 264, 318], weakening
the kernel’s protection against subsequent attacks. However, the most
famous examples of microarchitectural attacks that impact the security
of the kernel are two transient-execution attacks: Meltdown [185] and
Spectre [166]. With Meltdown, an attacker can circumvent the boundary
between kernel space and userspace, reading arbitrary memory without
having to exploit a bug in the kernel or its interface. Spectre, on the other
hand, relies on branch prediction to leak otherwise inaccessible data.

However, these microarchitectural attacks are comparatively new. The
predominant way to subvert the system is still via traditional memory
safety violations [289] that result in control-flow-hijacking attacks. The
attacker exploits a bug in an application running on the victim machine
to gain control of the application. This allows them to perform arbitrary
tasks with the privileges of the victim application. Typically, an attacker
tries to open a remote shell to make subsequent attack steps easier, e.g.,
by providing additional attack binaries that are then launched on the
victim machine. However, the hijacked application must interact with the
operating system to perform the necessary tasks.

In this thesis, we harden the kernel against unprivileged attackers
performing microarchitectural or control-flow-hijacking attacks. We sys-
tematically investigate the field of transient-execution attacks to determine
their impact on the kernel, discover new attack variants, and demonstrate
that the majority of the proposed defenses do not mitigate these attacks.
The reason for this is that they only focus on the cache as a transmission
channel, making them easy to circumvent. We even demonstrate that
an incomplete hardware mitigation for Meltdown allows an attacker with
local code execution to break KASLR, a defense that attempts to make
attacks on the kernel harder. Our attack achieves this with perfect accu-
racy and in a fraction of a second. As the attack exploits the behavior of
the hardware, it requires a software solution to fix the issue on existing
hardware. We propose and demonstrate such a mitigation that prevents
not only our newly found attack but also other ones that rely on hardware
behavior to break KASLR [53, 118, 134, 155, 181, 183, 184, 264, 318].

We further demonstrate how the kernel can be hardened by limiting
the attack surface that is exposed to hijacked applications. We achieve
this by restricting an initially benign but hijacked application’s access to
the syscall interface. While the Linux kernel already provides a feature
to restrict access in the form of Linux Secure Computing (seccomp) [81],
it has several shortcomings that limit its effectiveness. First, it is not

1.1. Main Contributions 3

used by a majority of the available applications. This is due to the
significant amount of manual work required as all necessary syscalls must
be manually identified. Second, while seccomp can restrict access to the
syscall interface based on simple syscall arguments, it cannot do the same
for complex arguments like strings or structs due to time-of-check-time-
of-use vulnerabilities (TOCTOU) [201]. However, especially syscalls that
use such complex arguments, like the exec syscalls, are of interest to
an attacker as they can severely impact the system’s security. Finally,
seccomp considers every syscall individually and cannot restrict a syscall
based on its predecessor. In this thesis, we propose solutions for all
three shortcomings. We demonstrate a novel system that automatically
generates the seccomp filters of an application, eliminating all manual effort
while drastically reducing the exposed attack surface of the kernel. We
show that dynamic and time-restricted isolation enables checks on complex
syscall arguments without being susceptible to TOCTOU vulnerabilities.
Finally, we propose a novel concept that relies on an application’s syscall
flow and the origin of syscalls in determining whether access should be
restricted or not. In all three cases, we significantly harden the kernel
by restricting an attacker’s access to the syscall interface better than
state-of-the-art solutions.

1.1 Main Contributions

As the field of transient-execution attacks was still in its infancy, the impact
on the kernel was largely unknown. We started with the assumption
that the field has only been sparsely explored and that a systematic
evaluation might reveal new attack variants. Additionally, we assumed
that existing defenses were not sufficient. We discovered several new
Meltdown variants by performing a systematic analysis, including the
first affecting AMD processors. Furthermore, we showed that multiple
predictors can be mistrained within and across address spaces, even with
congruent addresses. On the defensive side, we demonstrated that most
defenses do not mitigate transient-execution attacks. We outlined that
new defenses must focus on mitigating the root cause instead of simply
focusing on the transmission channel, i.e., the cache. The paper was
accepted at USENIX Security Symposium 2019 in collaboration with Jo
Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss [51].

Following other works in the field of transient-execution attacks, we
targeted the Meltdown hardware mitigations Intel implemented in newly

4 Chapter 1. Introduction and Contribution

released CPUs. We hypothesized that loads from kernel addresses are
still executed but that the loaded value is zeroed out before it is passed
on to dependent instructions. We reverse-engineered the hardware fixes
using several performance counters, indicating that our hypothesis was
correct. This newly gained information led to the discovery of a new
microarchitectural KASLR break, called EchoLoad, that allows an attacker
to de-randomize the location of the kernel without any false positives. We
also demonstrated a Meltdown attack from JavaScript on unpatched x86
CPUs. However, the paper’s main contribution was on the defensive side.
We analyzed the commonalities of previous microarchitectural KASLR
breaks, which resulted in a mitigation called FLARE. A kernel that employs
FLARE is protected against all of the analyzed microarchitectural KASLR
breaks. The paper was accepted at AsiaCCS 2020 in collaboration with
Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and Daniel
Gruss [50].

A year after our systematic evaluation of transient-execution attacks
and defense paper [51], we again investigated the whole field of transient-
execution attacks as additional attacks had been published. Instead of
focusing on differences in the attacks in previous work [51], we focused
on their commonalities. We showed that for Meltdown-type attacks, the
attacks can be grouped into three groups: deferred permission check, use of
intermediate values, and use-after-free. In the second paper, we analyzed
defenses, focusing on the differences in proposed defenses by academia and
industry, highlighting that academia proposes more radical defenses. We
also discussed that many of the proposed defenses still do not mitigate the
root cause. Both papers were published at GLSVLSI 2020, with the first
being a collaboration with Khaled N. Khasawneh and Daniel Gruss [48].
The second was a collaboration with Sai Manoj Pudukotai Dinakarrao,
Daniel Gruss, and Khaled N. Khasawneh [49].

While microarchitectural attacks impact the kernel’s security, more
traditional attacks, such as control-flow-hijacking attacks, have more com-
monly threatened the kernel and the system’s overall security. Hence, we
shifted the focus from hardening the kernel against microarchitectural
attacks to reducing the attack surface the kernel exposes to unprivileged
applications. Typically, this is achieved by employing sandboxing tech-
niques that limit access to a specific resource. The resource of interest
that the kernel exposes to unprivileged userspace applications are syscalls.
Linux provides the Secure Computing (seccomp) interface [81] to limit an
application’s access to the syscall interface. However, seccomp requires
manual identification of all the syscalls an application requires, which

1.1. Main Contributions 5

limits the usage of seccomp in real-world applications. We wanted to
automate this process by identifying these syscalls using static analysis
either during the compilation of the application or by analyzing an ex-
isting binary. The resulting tool, called Chestnut, consists of a compiler
extension, a binary analysis tool, and a dynamic refinement tool. We
demonstrated that applications that have access to the syscall interface
restricted by Chestnut are much less likely to threaten the kernel. The
paper was accepted at ACM CCSW 2021, was awarded the best paper
award, and was done in collaboration with Mario Werner, Daniel Gruss,
and Michael Schwarz [52].

Isolation of different security domains is a critical task, especially
in modern systems. Examples of such security domains are the kernel
and userspace or the trusted and untrusted part in SGX. Previous work
proposed various solutions to isolate security domains from each other [23,
31, 59, 71, 90, 129, 133, 167, 186, 188, 199, 207, 229, 260, 275, 299,
310, 319]. However, these approaches either require code instrumentation,
newly developed hardware features or existing but not yet readily available
ones. We wanted to develop an approach that runs on commercial off-the-
shelf systems. With Domain Page-Table Isolation (DPTI), we proposed
a concept for time-limited changes to the memory isolation that can be
dynamically applied at security-critical points. The enforcement is done
purely by the existing isolation provided by the MMU. DPTI modifies
an application’s page tables so that only one domain can access a page
while it is being used. We demonstrated DPTI in two use cases: deep
argument (string) filtering of syscall arguments and isolating the host
from a potentially malicious SGX enclave. The former allows us to safely
check strings used as syscall arguments, which is impossible with seccomp.
The latter prevents a potentially malicious enclave from exploiting the
host application and, through it, the kernel with a lower overhead than
prior work [319]. The paper is available as a pre-print and was done
in collaboration with Andreas Kogler, Lukas Giner, Daniel Gruss, and
Michael Schwarz [54].

Control-flow integrity [1] (CFI) is a countermeasure that restricts
control-flow transfers to valid targets. By design, CFI is only applicable
within the same security domain, i.e., CFI typically does not provide
integrity to user-kernel transfers. However, seccomp [81] enables cross-
domain checks, but due to the stateless design, it can neither constrain the
syscall flow nor provide sufficient integrity to user-kernel transfers. Hence,
we propose the concept of coarse-grained syscall-flow-integrity protection
(SFIP). Coarse-grained SFIP relies on three pillars: syscall sequences

6 Chapter 1. Introduction and Contribution

that model the syscall flow of the application, syscall origins that identify
locations from which a syscall can originate from, and the enforcement
of the information by the kernel. We implemented a proof-of-concept
of SFIP, called SysFlow, which extracts the necessary information using
static analysis during the compilation of an application. Enforcing this
information imposes more significant constraints on the syscall execution
than in seccomp, further limiting an attacker’s interaction with the kernel
through a hijacked application. The paper is available as a pre-print and
was done in collaboration with Sebastian Dorn, Daniel Gruss, and Michael
Schwarz [47].

1.2 Other Contributions

While working on our systematic analysis of transient-execution attacks
and defenses [51], we discovered that most proposed defenses do not
protect against such attacks by eliminating the root cause. Instead, they
focus on other phases of the attack [48, 51, 324]. Therefore, attacks are
still possible by merely modifying the attack. With ConTExT [267], we
targeted the actual root cause of Spectre-type attacks. ConTExT consists
of two different parts, full ConTExT and ConTExT-light, that rely on
annotating secret data in the source code. Such annotated variables are
grouped on a page by the compiler and marked as secure. ConTExT-
light re-uses existing parts that allow mitigating Spectre-type attacks on
existing hardware while full ConTExT requires hardware changes. The
paper was accepted at NDSS 2020 and was done in collaboration with
Michael Schwarz, Moritz Lipp, Robert Schilling, Florian Kargl, and Daniel
Gruss [267].

Based on the systematization paper [51], we investigated different
buffers that could be exploited with transient-execution attacks. One such
buffer is the store buffer, which we subsequently exploited in Store-to-
Leak Forwarding [264] and Fallout [53]. While both attacks target the
same microarchitectural element, they significantly differ in the parts they
exploit in the store-to-load forwarding logic. In Store-to-Leak Forwarding,
we exploited a combination of the true positive and true negative match
in the store-to-load forwarding logic. Fallout, on the other hand, exploited
the false positive match in the store-to-load forwarding logic. The partial
address match results in the incorrect data being forwarded to the register
from where it is then used in further computations. Both papers were
submitted to CCS 2019 and have been merged as per the program com-
mittee’s request. Store-to-Leak Forwarding was done in collaboration with

1.2. Other Contributions 7

Michael Schwarz, Lukas Giner, and Daniel Gruss. Fallout was originally
discovered by Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael
Schwarz, Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens,
Berk Sunar, and Yuval Yarom. The merged CCS 2019 paper was then
a collaboration with Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz,
Berk Sunar, Jo Van Bulck, and Yuval Yarom [53].

Since the discovery of Spectre [166], academia and industry have pro-
posed various countermeasures that try to address the problems raised
by speculative execution. However, none of these approaches considered
removing all conditional and indirect branches. We proposed a defense
that linearizes the entire program flow using a new compiler pass. While
the countermeasure is indeed effective in mitigating Spectre attacks that
exploit control-flow mispredictions [166, 168, 192], we observed perfor-
mance overheads of up to factor 1000. The paper was accepted at FC
2021 and was done in collaboration with Martin Schwarzl, Daniel Gruss,
and Michael Schwarz [272].

Power side-channel attacks have been known since the mid-90s, but
require direct access to the hardware and expensive equipment. Modern
CPUs include power management functionality to adapt processing power
based on usage and thermal constraints. Unfortunately, the kernel ex-
poses this information to userspace, allowing an attacker to exploit this
information for attacks on cryptography in a correlation power analysis
attack (CPA). Furthermore, a privileged attacker can exploit this infor-
mation directly in the kernel to attack SGX, which is allowed under its
threat model. The paper was accepted at S&P 2021 and was done in
collaboration with Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, and Daniel Gruss [184].

One of the unknowns when it comes to Spectre attacks is the security of
various programming languages and their execution enviroments. To pro-
vide insights into this field, we evaluated various execution environments
and showed that 26 out of 42 do not contain a mitigation against any vari-
ant of Spectre attack. We then developed a tool, called Speconnector, that
helps in developing proof-of-concept Spectre attacks. Using Speconnector,
we implemented several Spectre attacks in various programming languages.
Additionally, we also implemented Spectre attacks on code generated by
various execution environments. Our results indicate that even years after
the disclosure of Spectre, several programming languages and execution
enviroments still remain vulnerable. The paper was accepted at ICISSP
2022 and was done in collaboration with Amir Naseredini, Stefan Gast,

8 Chapter 1. Introduction and Contribution

Martin Schwarzl, Pedro Miguel Sousa Bernardo, Amel Smajic, Martin
Berger, and Daniel Gruss [215]

After the publication of Load-Value Injection (LVI) [303], we inves-
tigated how one of the proposed attacks, LVI-NULL, can be mitigated
in the SGX scenario without too high of an overhead. Our proposed
defense, called LVI-NULLify, repurposes segmentation to place memory
locations exploited by LVI-NULL under control of the enclave. We achieve
this through a modified SGX-SDK and a compiler extension. The paper
was accepted at USENIX Security Symposium 2022 and was done in
collaboration with Lukas Giner, Daniel Gruss, and Michael Schwarz [103].

In previous work, we focused on automating seccomp filter gener-
ation [52] as this normally requires tedious manual effort. The filters
that are used by seccomp are expressed in the classic Berkeley Packet
Filter [200], which imposes some restrictions on the expressiveness of the
seccomp filter. For instance, cBPF is stateless. This statelessness allows
seccomp to only perform very simple checks, such as whether the current
syscall is allowed. On the other hand, the extended Berkeley Packet Filter
allows for more expressiv filters. We hence proposed to support eBPF in
seccomp alongside the classic cBPF. By using eBPF, application devel-
opers can perform additional checks, such as whether the current syscall
is valid in the context of the previous one [47], syscall count limiting, or
syscall serialization. The paper was done in collaboration with Jinghao
Jia, YiFei Zhu, Yicheng Lu, Hsuan-Chi Kuo, Andrea Arcangeli, Hubertus
Franke, Tobin Feldman-Fitzthum, Dimitrios Skarlatos, Daniel Gruss, and
Tianyin Xu.

1.3 Outline

The structure of this thesis is as follows. Chapter 2 provides background
on essential tasks of operating systems and briefly discusses the idea of
sandboxing and isolation. It also discusses the ISA and microarchitecture
of modern CPUs and the concept of side channels and microarchitectural
attacks. Chapter 3 gives an overview of the state of the art in software-
based microarchitectural attacks and mitigations for control-flow-hijacking
attacks. In Chapter 4, we conclude our work and provide an outlook on
potential future research.

2
Background

This chapter provides the necessary background for this thesis. In Section
2.1, we discuss operating systems (OS), focusing on the concept of virtual
memory (Section 2.1.1), and how unprivileged userspace applications can
interact with the privileged OS (Section 2.1.2). Afterward, we briefly
discuss sandboxing and isolation (Section 2.2). Section 2.3 covers the
microarchitectural level, discussing the instruction-set architecture (ISA)
and the microarchitecture. In Section 2.3.1, we discuss caches as they
are frequently abused in microarchitectural attacks. We discuss how the
cache is organized and how it manages the data. Sections 2.3.2 and 2.3.3
discuss other microarchitectural optimizations in the form of instruction
pipelining and speculative execution, respectively. Finally, in Section 2.4,
we provide a definition of side channels (Section 2.4.1) and discuss the
general idea of microarchitectural side-channel attacks that use them to
obtain sensitive information (Section 2.4.2).

2.1 Operating Systems

Operating systems are a central piece of our everyday computing infrastruc-
ture as they handle several tasks that are essential for a well-functioning
system. For instance, the OS is responsible for handling input and output,
managing processes and their memory, and directly interacting with the

9

10 Chapter 2. Background

CR3

Offset (12 bit)PTI (9 bit)PDI (9 bit)PDPTI (9 bit)PML4I (9 bit)

PML4E #0

⋮

PML4E #PML4I

⋮

PML4E #511

PDPTE #0

⋮

PDPTE #PDPTI

⋮

PDPTE #511

PDE #0

⋮

PDE #PDI

⋮

PDE #511

PTE #0

⋮

PTE #PTI

⋮

PTE #511

Byte #0

⋮

Byte #Offset

⋮

Byte #4095

48-bit Virtual Address

PML4 PDPT Page Directory Page Table 4 KB Page

Figure 2.1: The 4-level paging mechanism on the x86 64 architecture [180, 263].
The CR3 register points to the start of the first level, subsequent
levels are determined by blocks of bits of the virtual address that
serve as the index to the respective page table.

underlying hardware. The higher privilege level of the kernel makes it a
high-value target for unprivileged attackers.

For this thesis, we limit our discussion of operating systems to the parts
that are strictly necessary, i.e., the concept of virtual memory and the
system-call interface. Other topics, like interrupt handling and scheduling,
are out of scope. For a more in-depth discussion of these topics, we refer
the reader to the literature [290].

2.1.1 Virtual Memory

Modern systems can run multiple processes simultaneously. To prevent
different processes from interfering with each other, the system assigns
each process its own virtual address space. Therefore, processes do not
directly operate on physical addresses but on virtual addresses. However,
the system must still facilitate a mapping between virtual and physical
addresses, i.e., the underlying physical memory. This task is delegated to
the processor, who performs this task via multi-level page tables defined
by the OS for each process. This memory management scheme is typically
referred to as paging.

With paging, the memory is managed at the granularity of a memory
page, whose size is defined by the architecture. The most common page
size is 4 kB. While page tables are primarily necessary for translating
virtual to physical addresses, they also store additional information, such
as permissions for each page.

2.1. Operating Systems 11

In this thesis, we primarily focus on 64-bit x86 CPUs, which use a
64-bit sign-extended virtual address. However, only 48 bits are effectively
used together with 4 levels of page tables to translate a virtual to a physical
address. Newer processors have increased the number of used bits to 57
bits and 5 levels of page tables.

We illustrate the page-table hierarchy in Figure 2.1. The top level of
the page-table hierarchy, the Page-Map Level 4 (PML4), is referenced by
the register CR3. To support multi-processing, this register is changed
upon a context switch to point to the top of the hierarchy for the newly
scheduled process. The PML4 consists of 512 PML4 entries, each entry
being 64 b wide and containing a flag that indicates whether the respective
entry is valid. Such valid entries refer to the next level in the hierarchy, the
Page-Directory Pointer Table (PDPT). To determine the correct entry in
the PML4 for the virtual address being translated, the processor uses bits
39 to 47 as a lookup index into the PML4. While the PDPT largely follows
the same structure as the PML4, there is one key difference. Starting at
this level, an additional flag in each entry indicates whether the entry
directly refers to a 1 GB range of physical memory or the next level in
the hierarchy. The entry is again determined by a subset of bits from the
virtual address, i.e., bits 30 to 38. If the entry points directly to physical
memory, the remaining 30 bits of the virtual address are used as an offset
into the physical page. In the other case, bits 21 to 29 are used to look up
the entry in the next level, the Page Directory (PD). There, the respective
entry can either point to a 2 MB page of physical memory or the next
level, the Page Table (PT). In the former, the remaining 21 bits are used
as an offset into the page. If it points to the PT, bits 12 to 20 are used
to look up the correct and final entry pointing to a 4 kB page of physical
memory, with the remaining 12 bits being used as an offset. Traversing
the page tables is referred to as a page-table walk.

In addition to the flags that indicate valid entries and whether the entry
refers directly to physical memory or the next level, each entry contains
several other flags. These flags can indicate several properties, such as
whether the corresponding memory is read-only or writable, present, has
recently been accessed, and whether it is accessible to userspace.

As applications frequently need to access physical memory, it is nec-
essary that the translation only introduces a small delay to a memory
access. This can be hard to achieve as the paging structures themselves
are stored in memory. Hence, caches reduce the number of main memory
accesses (cf. Section 2.3.1). The Translation Lookaside Buffer (TLB), a

12 Chapter 2. Background

Ring 3

Applications

Ring 2

Device Drivers

Ring 1

Device Drivers

Ring 0

Kernel

Figure 2.2: The different protection rings on x86 processors [254]. Ring 0 has
the highest privilege and ring 3 the lowest. Rings 1 and 2 are rarely
used as the device drivers are often directly part of the OS.

dedicated cache that stores the result of recently performed translations,
can be used to skip the time-consuming page-table walk.

2.1.2 System-Call Interface

Userspace applications need to rely on the OS for specific tasks, such as
memory management, process creation and termination, and hardware
interaction. Applications run in what is called ring 3 while these tasks
require ring 0 privileges (cf. Figure 2.2). To facilitate this interaction
between a userspace application and the OS, the OS defines so-called
system calls (syscalls) that expose the necessary functionality to the
application. If an application performs a syscall, the processor transitions
into a higher privilege level, the kernel is invoked and performs the task
on behalf of the application. Once the task has been fulfilled, the kernel
drops the higher privilege level and hands control back to the userspace
application, which can continue its execution. Naturally, an interface that
exposes higher-privilege code to unprivileged code is of great interest to
malicious actors.

2.2 Sandboxing and Isolation

The applications that run on our computers can come from various un-
trusted sources. Once executed, they typically have unrestricted access to
the network, storage, or the syscall interface. Unfortunately, they are also

2.2. Sandboxing and Isolation 13

often written in memory-unsafe languages like C, enabling attackers to
hijack them through memory safety violations [289]. Hence, by hijacking
an application, an attacker also gains unrestricted access to the previously
discussed resources. With sandboxes, it is possible to create a restricted
environment that constrains the resources available to an application to
the bare minimum, i.e., the application only gets the resources it needs.
Sandboxes can be created and enforced in many different ways, i.e., by the
hardware, the OS, or the programming language. Several large projects
already use sandboxes. For instance, browsers or mobile operating systems
rely on various types of sandboxes to limit the post-exploitation impact of
potential attacks [63, 138, 211]. In this thesis, we only focus on sandboxes
that restrict an application’s access to the syscall interface.

Isolation, on the other hand, attempts to isolate trusted code from an
untrusted environment while potentially also restricting access to some
resources, e.g., certain instructions or the syscall interface. Enforcement of
the isolation is often delegated to the hardware as it is commonly assumed
to be trusted. For instance, the hardware is tasked with enforcing the
isolation of the kernel from userspace. It is also responsible to enforce
isolation in a trusted execution environment like Intel Software Guard
Extension (SGX), isolating the trusted enclave from the rest of the system
(Section 2.2.1).

2.2.1 Intel SGX

A concrete example of an isolation mechanism is Intel SGX. Starting with
the Skylake microarchitecture, Intel introduced the SGX instruction-set
extension to isolate trusted code from an untrusted system [143]. SGX
splits userspace applications into two parts: a trusted part, the so-called
enclave, and an untrusted part. In SGX, the processor enforces the
isolation, and no other system part is trusted. This means that neither
the application nor the OS can access the enclave’s memory. The SGX
memory range is encrypted and integrity-protected to protect against
bus-probing and cold-boot attacks. This results in a very strong threat
model as SGX assumes that everything except the processor could be
compromised, including the OS. A typical use case for SGX is digital
rights management [320].

Similar to the system-call interface, SGX specifies a well-defined in-
terface for the communication between the application and the enclave.
Entering and exiting an enclave is done using a set of pre-defined instruc-

14 Chapter 2. Background

tions, i.e., eenter and eexit. Any other attempt to access the enclave or
its memory is prevented by the hardware.

SGX also imposes restrictions on the enclave to improve the security
of the isolated code [143]. For instance, enclaves cannot perform any
I/O operations, including syscalls. Hence, the enclave must rely on the
untrusted application to facilitate communication with the OS. Addition-
ally, in SGXv1, it is also not possible for enclaves to execute specific
instructions, such as instructions that access the high-precision timer of
the processor [266].

2.3 ISA and Microarchitecture

The ISA defines, among other things, data types, registers, I/O, supported
instructions, or virtual memory (cf. Section 2.1.1). Several different ISAs
exist, such as x86, POWER, or ARMv8. Any ISA guarantees that an
application built for it runs on all CPUs implementing the ISA. However,
the runtime performance may differ, independent of the processor’s clock
speed. The reason for this is that the ISA does not provide any infor-
mation on how the individual parts should be implemented, i.e., it only
provides an abstract definition of a CPU. Therefore, the actual hardware
implementation, i.e., the microarchitecture, can differ even though the
same ISA is implemented. Consider CPUs from Intel and AMD. Both
vendors implement the x86 ISA, but the underlying microarchitectures
differ due to different intellectual property being used by each company.
Additionally, the microarchitecture does not only differ between compa-
nies but also between models of the same company. For instance, the
microarchitecture of an Intel Core CPU differs from a Xeon CPU. These
differences in the microarchitecture can lead to significant performance
differences.

While the microarchitecture can change between different CPU gener-
ations, several so-called microarchitectural elements are commonly used as
they significantly impact the performance. One example are caches, which
we discuss in Section 2.3.1. Other examples are out-of-order pipelines
that allow for parallel execution of instructions and predictors used in
speculative execution to reduce the number of pipeline stalls. We discuss
these in more detail in Sections 2.3.2 and 2.3.3, respectively.

2.3. ISA and Microarchitecture 15

Core 0

L1D L1I

L2 Cache

Core 1

L1D L1I

L2 Cache

Core 2

L1D L1I

L2 Cache

Core 3

L1D L1I

L2 Cache

Ring Bus

L3 Slice 0 L3 Slice 1 L3 Slice 2 L3 Slice 3

Figure 2.3: The cache hierarchy as found on typical Intel Core CPUs. Each
core has a private L1 and L2 cache, with the L1 being split into a
data (L1D) and instruction (L1I) cache. The L3 is split into slices
and shared across all cores via the ring bus.

2.3.1 Caches

This section discusses the concept of caches. We discuss how they are
organized (Section 2.3.1) and how they store data (Section 2.3.1).

Cache Organization

Processors have become faster and faster over the years, but the speed of
main memory (DRAM) could not keep up with this development, making
DRAM the main bottleneck in our modern systems. To alleviate the
problem, vendors added caches to the processors. These caches act as
small, high-speed buffers and are located between the CPU cores and
DRAM. Hence, accesses to memory typically go through them, and copies
of recent data loaded from DRAM are stored in the cache. The cache
is checked upon a memory access to determine whether it can serve the
memory load. If the data is in the cache and can be served from there,
this is called a cache hit, which reduces the latency on the load. Otherwise,
it is called a cache miss, and the data is served from DRAM.

Figure 2.3 shows the typical hierarchical layout of the cache for Intel
CPUs. The hierarchy consists of multiple levels, with the one directly
connected to the CPU core being the fastest but also the smallest. It is
called the first-level (L1) cache and is private to the respective core. The
L1 is commonly split into two parts, one for instructions (L1I) and one for
data (L1D). The L1 is typically followed by a larger but slower L2 cache,
private to the core. The last-level (LLC or L3) cache follows the L2 and is
the largest but slowest cache. It is often split into so-called slices. While

16 Chapter 2. Background

Address

Tag Index Offset

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

Way 0

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

≡

Way 1

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

Tag Data

≡

Encode

Data

Figure 2.4: An illustration of a 2-way set-associative cache [180]. The lowest
bits of the address are used as an offset to the cache line. The subset
in the middle is used to determine the set, while the highest bits are
used for the tag. When loading new data, the cache-replacement
policy determines in which way the loaded data is placed.

every core can access the slice closest to it directly, it can access all others
via a ring bus or a mesh. Hence, the L3 is typically shared among all
cores of the CPU. With each level, the distance of the respective cache to
the core increases. This results in higher access latencies, but also allows
for larger caches.

Inclusion Policy. Caches in a hierarchy can follow different policies
when it comes to which level holds copies of the data. A higher-level
cache that holds all cache lines from a lower level is called inclusive. For
instance, an L1-inclusive L3 cache also holds all cache lines from the L1.
In an exclusive cache, data can only reside in a single cache level at the
same time. If neither is the case, the cache is called non-inclusive, i.e.,
data might be found on another level.

Set-associative Caches

There are different ways a cache can be designed, each having advantages
and disadvantages. The design predominantly used in modern processors
is called a set-associative cache design (cf. Figure 2.4). In such a design,
the cache is divided into cache sets, which are then further sub-divided

2.3. ISA and Microarchitecture 17

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Figure 2.5: An example of a simple 5-stage pipeline. The stages are Instruction
Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access
(MEM), and Write Back (WB).

into cache ways. A way is also referred to as a cache line and is where
the actual data is stored. Additionally to the data, each way also stores a
tag that determines whether a cache line holds the requested data instead
of unrelated data within the same set. It also stores additional metadata,
such as whether the data has been modified or not.

The address of the data is used to determine the cache set and the
tag. The cache way is then determined by the cache-replacement policy.
As either the virtual or physical address can be used for the cache set
and tag, there are 4 different types of caches [342]: virtually indexed and
virtually tagged (VIVT), physically indexed and physically tagged (PIPT),
physically indexed and virtually tagged (PIVT), and virtually indexed
and physically tagged (VIPT). On Intel processors, the L1 is typically
VIPT, while the higher levels use a PIPT design.

2.3.2 Instruction Pipelining

To increase the throughput of modern processors, vendors rely on in-
struction pipelining. The processor splits the execution of an instruction
into several, processor-defined number of stages. Each stage is executed
one after the other, buffering intermediate results between the individual
stages. Once a stage has finished processing an instruction, the instruction
can move on to the next stage of the pipeline at the next clock cycle. The
freed stage can then process the next instruction. Figure 2.5 illustrates a
simple 5-stage pipeline consisting of the following stages:

1. Instruction Fetch (IF)

2. Instruction Decode (ID)

18 Chapter 2. Background

3. Execute (EX)

4. Memory Access (MEM)

5. Write-back (WB)

As the names indicate, each of the 5 stages outlined above is responsible
for a specific task when executing an instruction. In the first stage (IF),
the instruction that is to be executed next is fetched and passed on to the
second stage (ID), where it gets decoded. Once decoded, the instruction is
moved to the third stage (EX) where it is executed using the responsible
execution unit. A potential memory access is then handled in the fourth
stage (MEM) before the final results of the instruction are written back
to the register file in the final stage (WB).

While the simple design of a pipeline above already employs paral-
lelization, i.e., instruction i + 1 is fetched while instruction i is decoded,
modern processors go even further. These processors use an out-of-order
execution design in which decoded instructions are placed in the order of
the instruction stream in a buffer, the so-called Reorder Buffer (ROB),
until the required execution unit is free and all operands are ready. Once
this is the case, the processor moves the ready instruction to the execution
stage even if it is not the next instruction in the instruction stream, i.e.,
instruction i + 1 is executed before instruction i. A successfully executed
instruction is marked as valid and complete in the ROB, making its results
available to dependent instructions. If an instruction marked as valid
and complete reaches the top of the ROB, it is retired, making its result
architecturally visible. This ensures that instructions are retired in the
order they appear in the instruction stream. This type of execution is
based on Tomasulo’s algorithm [296].

One important part that allows such pipelines to work efficiently is
knowing which instruction needs to be fetched next. If the next instruction
is known, the processor can already fetch it into the pipeline. One case
where this is not possible is conditional branches, as their outcome is only
known after the execute stage. Therefore, the pipeline must be stalled
until the conditional branch has finished executing, causing a performance
penalty. We discuss how modern processors can use speculative execution
to prevent such stalls in Section 2.3.3. Other instances where the pipeline
must be stalled are data hazards. An example of this are read-after-write
hazards, which occur if an instruction requires the computed value of a
previous instruction still in the pipeline.

2.3. ISA and Microarchitecture 19

2.3.3 Speculative Execution

The instruction stream of applications is almost never purely linear. In-
stead, it contains a multitude of branches that divert the control flow.
However, the result of a branch instruction is only known after the execute
stage, i.e., after it has finished executing. In that case, the application does
not know beforehand what the next instruction to fetch is and would need
to stall, negatively impacting the performance. To minimize the number
of stalls or even prevent them entirely, CPUs use a Branch Prediction
Unit comprised of various individual branch predictors. By using these
predictors, the CPU tries to predict the outcome of a control-flow change
before the result is known and fetches the next instruction based on this
prediction. If the prediction is correct, the CPU has already performed
the necessary calculations and retires the respective instructions. Hence,
the CPU saved time that would have been lost to the stall while waiting
for the outcome of the control-flow decision. If the prediction was wrong,
the CPU has to squash the results and start execution along the correct
path. The feature of executing code that is potentially not needed is called
speculative execution.

Branches can occur in various forms, i.e., conditional branches, indi-
rect jumps, calls, or returns. Modern processors contain a predictor for
each one of these forms. To predict conditional branches, two different
approaches can be taken: either through a static or a dynamic prediction.
In the former, the branch is predicted based on the instruction itself, e.g.,
conditional branches are always considered to be taken [130]. With the
latter, the processor gathers runtime information and bases the prediction
on this information, which allows for a better predictor [60]. Common
designs for such a dynamic predictor use a Pattern History Table (PHT)
containing saturating counters [87]. The table can be indexed by the
branch history or parts of the branch’s address.

Another predictor, the branch-target predictor, tries to determine the
destination of a branch instead of the outcome of a conditional branch. To
make the prediction, it relies on the Branch Target Buffer (BTB), which
stores the destination of the most recent target based on the source of the
control-flow change [166].

The Return Stack Buffer (RSB) is used to predict the destination of
a function return and is built on the observation that the sequence of
calls and returns are tightly tied together [168, 192]. Hence, each call
instruction pushes the return address on top of the RSB. Upon a return,
the top of the RSB is popped and used as the predicted return destination.

20 Chapter 2. Background

In all cases, the CPU starts speculatively executing based on the
prediction and later verifies whether the prediction was correct. Correct
predictions result in the speculatively executed instructions being retired,
improving performance. Wrong predictions cause the instructions and
their results to be squashed [166].

While other prediction-based mechanisms like data prefetching [156],
value speculation [233], or way prediction [240] have been described and
deployed on modern systems, we do not consider such mechanisms in this
thesis.

2.4 Side-Channel and Microarchitectural Attacks

Side-channel attacks differ from traditional attacks that exploit memory
safety violations to leak information. While memory safety violations
can lead to direct disclosure of the information the attacker wants to
extract, side-channel attacks must infer the data from side effects of the
execution of an application. An attacker can rely on many different side
effects, e.g., electromagnetic emission [11, 247], power [193], or heat [136].
For a long time, such side-channel attacks required an attacker to have
physical access to a device, e.g., to connect a device to measure the power
consumption, as well as sophisticated and expensive hardware. However,
physical access is no longer necessary as side-channel attacks have been
demonstrated purely from software and even in a remote setup. In the
former, the requirements are reduced to local code execution on the victim
device while this requirement is completely removed for the latter.

2.4.1 Side Channels

We define a side channel as a channel that does not directly reveal data.
Instead, it exposes metadata, allowing the actual data to be inferred with
a certain probability [116].

We discuss this definition on the example of a frequently exploited
cryptographic algorithm, i.e., RSA. The modular exponentiation of RSA
can be implemented using square-and-multiply [110]. In square-and-
multiply, the bits of the secret key determine the type of operation that is
performed. A ’1’-bit indicates a square-and-multiply operation; a ’0’-bit
only performs a square operation. From a mathematical point of view, we
assume the algorithm to be secure. We also assume that the algorithm is
implemented without any software bugs, ensuring that an attacker cannot
directly leak the secret key. However, the software implementation can

2.4. Side-Channel and Microarchitectural Attacks 21

still leak the key through observable metadata. The reason for this are side
effects in the execution, i.e., square-and-multiply takes longer or requires
more energy than just a square operation. An attacker who can observe
this metadata can reconstruct the key bits, exploiting the side-channel
information for information disclosure.

2.4.2 Microarchitectural Side-Channel Attacks

The above example describes a side channel in the implementation of an al-
gorithm. However, side channels can also originate in the microarchitecture
of a processor. For instance, the internal state of some microarchitec-
tural elements, such as caches, depends on the previously processed data.
Observing this internal state allows an attacker to infer the sensitive in-
formation of the victim that led to the internal state. We refer to attacks
that exploit such microarchitectural side channels as microarchitectural
side-channel attacks.

The internal state of microarchitectural elements can be observed
through various information sources on the microarchitectural or archi-
tectural side. The microarchitectural side exposes mechanisms that allow
an attacker a view of individual elements of the microarchitecture. An
example of such a mechanism are so-called performance counters, which
provide fine-grained information on the performance and usage of various
CPU elements. For instance, performance counters track whether a load
resulted in a cache hit or miss, which reveals whether data was recently
accessed. However, access to performance counters is typically restricted,
forcing attackers to rely on unprivileged information exposed on the ar-
chitectural side. One such information source is timing. An attacker
can perform a timing-based attack by using the x86 rdtsc instruction
to obtain a high-resolution time-stamp-counter value. By being able to
accurately measure time, an attacker can, for instance, determine whether
data was in the cache or not by observing how long an access takes.

3
State of the Art

In this chapter, we discuss state-of-the-art microarchitectural and control-
flow-hijacking attacks, as both affect the security of the kernel. Section
3.1 discusses microarchitectural side-channel and transient-execution at-
tacks. Section 3.2 focuses on traditional control-flow-hijacking attacks and
defenses.

3.1 Software-based Microarchitectural Attacks

The internal state of microarchitectural elements can leak an application’s
sensitive information if an attacker can observe it. While modern pro-
cessors contain numerous microarchitectural elements that can leak such
information, the one that is most commonly used is the cache. Still, other
microarchitectural elements, e.g., predictors, have also been exploited.
More recently, the class of transient-execution attacks has been discovered.
These are microarchitectural attacks that rely on microarchitectural side
channels to directly extract sensitive information without having to infer
it from side-channel information.

Many works have systematized the field of microarchitectural attacks
over the years [9, 26, 96, 115, 189, 214, 284, 288, 334, 339]. In this thesis,
we provide an additional overview of the state-of-the-art and how we
extended it.

23

24 Chapter 3. State of the Art

3.1.1 Cache Attacks

In a cache attack, an attacker exploits the measurable timing difference
between data that is already present in the cache compared to data
that must be fetched from main memory. This timing difference can
leak sensitive information of a victim application as it allows an attacker
to infer the memory locations the victim application recently accessed.
The state-of-the-art presents several primitives that allow an attacker to
observe the internal state.

Eviction sets. Eviction-based cache attacks like Evict+Time, Prime+
Probe, and Evict+Reload rely on an attacker being able to evict a specific
cache set that the victim uses. These attacks require an attacker to have
a minimal eviction set and an eviction strategy [119]. The former is a set
of addresses where each one falls into the same cache set as the victim’s
address. The latter defines the pattern in which the addresses of the
eviction set are accessed to reliably evict the victim data. If the eviction
set and strategy used by the attacker are correct, all data in the targeted
cache set are replaced with attacker-controlled data.

The construction of an efficient eviction set depends on the CPU in
use. While some CPUs directly use a subset of physical address bits to
determine the cache set, other CPUs further partition the cache using
cache slices. For the former, several works have demonstrated how to build
an efficient eviction set [182, 225, 285]. While several works have done the
same for the latter, it is significantly more difficult as an undocumented
mapping function maps physical addresses to cache slices [120, 134, 140,
147, 187, 197, 329].

One difficulty in reverse engineering these mapping functions is the lack
of physical address information. While older systems exposed the necessary
information to unprivileged users, modern systems have restricted access
to it. Therefore, attackers rely on dynamic and static approaches to build
efficient eviction sets [282, 308]. If the system allows an attacker to use
2 MB pages, it becomes again trivial as the least-significant 21 bits of the
virtual address are identical to the physical bits [119, 146, 187, 198, 270].
This information is sufficient to determine the cache set. Other approaches
rely only on timing, allowing them to be used in attacks mounted from
JavaScript [38, 99, 113, 119, 224, 279, 308]. Several works presented
different eviction strategies and proposed methods to find and evaluate
them [41, 119].

3.1. Software-based Microarchitectural Attacks 25

Evict+Time

Cryptographic algorithms were the first target of cache attacks [25, 234].
These attacks were subsequently generalized by Osvik et al. [225] as Evict+
Time. An attacker using Evict+Time first manipulates the internal cache
state by evicting a specific set used by the victim, i.e., the attacker primes
the cache set with its own data. The next step is then to measure the
runtime of the target algorithm or application. By observing an increased
runtime, the attacker can infer that the victim has accessed data that falls
into the primed cache set, i.e., the victim data had to be fetched from
main memory. However, if the runtime does not increase, the victim has
not accessed an address that falls into the primed cached set.

Due to its coarse-grained nature, Evict+Time is very susceptible to
noise, forcing an attacker to perform multiple measurements. Evict+Time
has been used to attack cryptographic implementations [25, 152, 182, 202,
225, 285, 298], and to break ASLR [113] and KASLR [134]

Prime+Probe

Prime+Probe [25, 225, 234] is a more powerful attack compared to Evict+
Time as the attacker does not need to measure the runtime of the victim.
Instead, the attacker measures how long it takes to refill, i.e., prime, the
target cache set. Figure 3.1 illustrates a Prime+Probe attack.

In the first step, the attacker primes the target cache set using data
from memory locations under their direct control (Figure 3.1a). In the
second step, the victim performs some operations, potentially accessing
data that falls into the primed cache set (Figure 3.1b). However, Prime+
Probe might be mounted in parallel to the victim instead of running
interleaved. In the third and final step, the attacker probes the cache set
and measures how long it takes (Figure 3.1c). This step implicitly primes
the cache set for the next attack round. A high runtime in the probe step
indicates victim activity in the target cache set, while a small runtime
indicates no activity.

Using Prime+Probe, it is possible to target either the L1 caches, i.e.,
instruction [5, 7, 8, 234, 341] or data cache [4, 6, 35, 43, 217, 225, 298], or
the last-level cache [69, 126, 140, 146, 158, 187, 196, 197, 248, 250, 314].
A primary target on both the L1 cache and L3 are again cryptographic
algorithms [97, 139, 146, 158, 182, 187]. However, Prime+Probe is not
limited to cryptographic algorithms. Oren et al. [224] performed a Prime+
Probe attack in JavaScript, allowing them to spy on user behavior. Others
used Prime+Probe to establish a covert channel in the cloud [198, 322,

26 Chapter 3. State of the Art

Attacker Space Victim Space

Cache

(a) Step 1: Prime Cache Set

Attacker Space

¸

Victim Space

Cache

Load

(b) Step 2: Schedule Victim
Attacker Space Victim Space

Cache

Slow Access

Fast Access

(c) Step 3: Probe and Measure

Figure 3.1: A Prime+Probe attack consists of 3 steps [180]. First, the attacker
primes an entire cache set. Second, the victim performs a memory
access, loading data into the cache and evicting the attacker’s data.
Finally, the attacker probes the cache set and measures how long it
takes.

325]. Prime+Probe attacks have also been demonstrated from PNaCl and
WebAssembly [99]. Schwarz et al. [268] proposed Multi-Prime+Probe,
i.e., spying on multiple cache sets in parallel, enabling attacks on user
input. Kurth et al. [172] demonstrated a network-based Prime+Probe
attack by abusing Intel’s Direct Cache Access technology. Intel SGX
enclaves have also been targeted [40, 69, 111, 205] or were used to hide
such an attack [266]. While Prime+Probe attacks have pre-dominantly
targeted inclusive caches, they have also been demonstrated on non-
inclusive caches by targeting cache directories [326]. Furthermore, Prime+
Probe has also been used in transient-execution attacks to leak the encoded
information [297].

3.1. Software-based Microarchitectural Attacks 27

Attacker Space Victim Space

CacheFlush

(a) Step 1: Flush Shared Cache Line

Attacker Space Victim Space

Cache

Load

(b) Step 2: Schedule Victim
Attacker Space Victim Space

CacheReload

(c) Step 3: Reload and Measure

Figure 3.2: A Flush+Reload attack consists of 3 steps [180]. First, the attacker
flushes the shared cache line. Second, the victim accesses the shared
cache line, reloading it into the cache. Finally, the attacker reloads
the data and measures the execution time of the reload.

Flush+Reload

Previously discussed attacks require an attacker to evict a cache set and
try to determine changes within the entire set, i.e., they work on a cache
set granularity. However, flush-based attacks are also possible, as was first
demonstrated by Gullasch et al. [125]. This attack led to the discovery
of the more generic Flush+Reload attack [328], which measures the time
required to reload a single cache line after being flushed.

We illustrate the three phases of a Flush+Reload attack in Figure 3.2.
In the first phase, the attacker uses the flush instruction provided by the re-
spective ISA, e.g., clflush on x86, to invalidate a cache line (Figure 3.2a).
Similar to Prime+Probe, the second phase consists of the victim being
scheduled and performing some task, e.g., an encryption (Figure 3.2b).

28 Chapter 3. State of the Art

In the third and final phase, the attacker reloads the address used in the
flush phase and measures how long it takes to reload it (Figure 3.2c).

If the victim accessed the address, the data is brought back into the
cache. The subsequent access by the attacker then results in a cache hit,
indicated by the load’s low latency. However, if the victim does not access
the invalidated address, the access by the attacker must be served from
main memory, which requires significantly more time.

Flush+Reload has some advantages over previous attacks. Compared
to Evict+Time and Prime+Probe, Flush+Reload has cache-line granu-
larity and is virtually noise-free, enabling very stable and precise results.
Second, no knowledge about physical addresses is required as the flush
instructions use virtual addresses. Additionally, no eviction set is required
as the data is directly flushed. However, it also has 2 limitations that
hinders its usability in an attack. The first limitation is that it requires a
dedicated instruction that flushes a cache line based on a virtual address.
While both x86 and ARMv8 provide such an instruction, e.g., clflush
and dc civac respectively, unprivileged access to the instruction can be
disabled for the latter. These instructions are also not available in re-
stricted environments such as SGX or JavaScript. Second, Flush+Reload
requires that the targeted memory location is shared between the victim
and the attacker. As the cache uses physical addresses, shared memory
only resides in the cache once. Flushing it in one process flushes it for all
other processes as well. If the memory is not shared, the attacker cannot
flush the memory location for the victim. A typical target for Flush+
Reload is the victim executable or shared libraries [122].

Similar to Prime+Probe and Evict+Time, Flush+Reload has been
used to attack cryptographic algorithms [15, 24, 46, 92, 114, 122, 125,
127, 139, 148–150, 235, 239, 327, 328, 340], spy on user behavior [122,
182, 209, 313, 341], build a covert communication channel [51, 166, 182,
185], to detect double-fetch bugs [265], or as a building block for transient-
execution attacks [51].

Flush+Flush. Flush+Flush [120] is a variant of Flush+Reload that
does not require an explicit reload of the memory location by the attacker.
Instead, it relies only on flush instructions, measuring how long it takes
the attacker to flush the memory location again instead of reloading it. If
the victim accessed the memory location, the flush instruction requires
more time than when the location was not accessed.

Flush+Flush has been used to attack cryptographic algorithms [42,
120], page tables [301], and to spy on user behavior [120].

3.1. Software-based Microarchitectural Attacks 29

Evict+Reload. Restricted environments, such as JavaScript, do not
provide a way to execute the flush instruction. However, attackers still
want to profit from the fine-grained resolution of Flush+Reload. Evict+
Reload [122, 182] provides the same granularity as Flush+Reload. Instead
of relying on a flush instruction in Figure 3.2a, the attacker uses eviction.
All other steps remain the same as in Flush+Reload. This enables Flush+
Reload-type attacks in restricted environments [79, 113, 166, 257, 264] and
on ARM-based systems where the flush instructions can be privileged [182].

Other Cache Attacks

Several works have abused the LRU replacement policy to mount at-
tacks [41, 243, 323]. Others have introduced congestion to the mesh
interconnect to leak cryptographic keys [312] or used timing differences
introduced by dirty cache lines [68]. With Prime+Abort [78, 121], the
timing of the probe step is replaced with the abort semantics of Intel TSX,
eliminating the requirement of a high-resolution timer. Lipp et al. [183]
exploited timing differences introduced by cache-way predictors. With
CacheBleed, Yarom et al. [330] abused cache-bank conflicts to recover a
victim’s secret information, such as RSA keys.

3.1.2 TLB Attacks

Modern CPUs feature other types of caches besides the instruction and
data caches. One such cache is the translation lookaside-buffer (TLB),
which stores the result of recent virtual-to-physical address translations.
Similar to previous caches, the idea behind the TLB is to gain performance
by removing the requirement of virtual-to-physical address translations for
recently accessed pages. However, this difference in performance also leads
to a timing side channel, which has been exploited in several previous
works. Some have used the information on whether a translation is present
in the TLB to de-randomize the kernel address space [53, 118, 134, 155,
170, 264]. Others have attacked cryptographic algorithms [112] or spied
on user behavior [264]. Van Schaik et al. [304] performed an indirect cache
attack by abusing translation operations of the MMU. Gras et al. [112]
and Tatar et al. [291] reverse-engineered the TLB to leak cryptographic
keys or to perform Rowhammer attacks.

30 Chapter 3. State of the Art

3.1.3 Attacks on Predictors

While caches try to hide the latency of memory accesses or virtual-to-
physical address translations, predictors are used to avoid pipeline stalls.
Predictors typically try to predict either control or data flow. However,
they can also be abused by malicious actors as predictions are based on
previously observed data.

Branch Predictors. The first work that exploited branch predictors
measured timing differences caused by branch mispredictions to recover
cryptographic keys [10]. Evtyushkin et al. [84] built a Prime+Probe covert
channel on branch predictors. Subsequent work has then abused branch
predictors to break KASLR [85]. Lee et al. [177] demonstrated that a
BTB side-channel attack allows an attacker to infer the control flow of
an SGX enclave. Huo et al. [135] targeted Intel SGX with a PHT-based
side-channel attack. Evtyushkin et al. [86] exploited the directional branch
predictor to attack Intel SGX.

Prefetchers. CPUs try to predict future memory access, issuing them
before they may be necessary. If successful, the necessary data might
have been loaded into one of the caches before it is needed. Reverse-
engineering these hardware prefetchers and their replacement policies has
led to a prefetcher-aware Prime+Probe attack [314]. Others have also
reverse-engineered the prefetcher on out-of-order Intel CPUs and used
the resulting information to attack cryptographic algorithms [27, 276].
Rohan et al. [251] established a covert channel between two processes on
the same physical core by reverse-engineering the L2 hardware prefetcher.
A similar covert channel was built by Cronin and Yang [67].

Memory Disambiguation. Before each load, the CPU checks for pre-
viously performed stores to the same address where the data has not
yet been propagated to the cache hierarchy, i.e., it still resides in the
store buffer. If such a store exists, the data is forwarded to the load,
ensuring no stale data is used. This optimization is called store-to-load
forwarding. However, the check does not use the full address but only the
lower 12 bits to determine whether the load must be reissued or not [142].
Additional, partial checks of the phyiscal address are also performed [151].
Like other optimizations, store-to-load forwarding has also been exploited
in various ways. For instance, the partial address check allows an attacker
to establish a covert channel [287]. Moghimi et al. [204] recovered crypto-

3.1. Software-based Microarchitectural Attacks 31

graphic keys after injecting false dependencies of memory read-after-write
hazards. Schwarz et al. [264] combined store-to-load forwarding with the
TLB to break KASLR. Islam et al. [151] accelerated Prime+Probe and
Rowhammer attacks by abusing the dependency resolution logic to recover
physical addresses.

3.1.4 Transient-Execution Attacks

Transient-execution attacks are a new class of attacks that allow attackers
to leak a victim’s data directly instead of only metadata. This makes
them much more powerful than traditional microarchitectural side-channel
attacks. Transient-execution attacks rely on instructions that are executed
transiently, i.e., instructions that have been executed by the CPU but
whose results are never committed to the architectural state [51, 166, 185,
302]. This can, for instance, occur if the instruction is part of the predicted
path following a control or data flow prediction, but the prediction was
wrong. Another example are instructions that are executed during out-of-
order execution after an exception has occurred. While the result of these
transient instructions is never made architecturally visible, they leave
microarchitectural side effects. Using traditional microarchitectural side-
channel attacks, an attacker can make them visible on the architectural
level.

Transient-execution attacks can be distinguished by their trigger and
grouped into three subclasses [180]. Spectre-type attacks are triggered
by a misprediction, while Meltdown-type attacks rely on illegal data flow
following various faults or assists. On the other hand, LVI-type attacks
reverse Meltdown by not extracting data but injecting it into the victim
domain. The remainder of this section provides an overview of the three
subclasses.

Spectre

The first class of transient-execution attacks is Spectre-type attacks, ex-
ploiting control- and data-flow mispredictions. To perform such an attack,
an attacker must mistrain the underlying prediction unit so that the CPU
is tricked into executing code that it should not execute based on the
architectural instruction stream. These code snippets, called gadgets,
encode the victim’s sensitive data into a microarchitectural element from
which the attacker can extract it using traditional side-channel attacks,
bringing it to the architectural level.

32 Chapter 3. State of the Art

When first disclosed, Spectre variants exploiting the Pattern History
Table (PHT) and the Branch Target Buffer (BTB) were demonstrated
in userspace and the kernel [166]. We discuss the idea of a Spectre-type
attack using Spectre-PHT as an example. The PHT is responsible for
making predictions on whether a branch should be taken or not. An
attacker mistrains a branch by repeatedly providing a value that results
in the branch being taken, e.g., values that are in-bounds in the case of a
bounds check. When the victim reaches the branch with an out-of-bounds
value, the PHT predicts that the branch is taken. This results in an
out-of-bounds memory access in the transient domain. Typically, the
out-of-bounds loaded data is encoded in the microarchitectural state, e.g.,
caching of a shared memory location based on the value of the accessed
data. The attacker can then recover the actual value using traditional
side-channel attacks instead of having to infer it from extracted metadata.

The first disclosure of these types of attacks spurred a significant
amount of further research. For instance, the PHT has also been exploited
for transient buffer overflows [164]. Subsequent work exploited the Return
Stack Buffer (RSB) [168, 192] and store-to-load forwarding (STL) [132].
Recently, Barberis et al. [20] showed that cross-privilege attacks via the
branch history state are possible despite countermeasures. Schwarz et al.
[271] demonstrated that Spectre attacks can even be abused remotely.
Intel SGX [58, 222] and System Management Mode [80] have also been
targeted. Göktaş et al. [105] combined Spectre with a memory corruption
vulnerability while Bhattacharyya et al. [28] demonstrated a Spectre-style
code-reuse attack. Wampler et al. [311] hid malware from static and
dynamic analysis by leveraging speculative execution.

While the cache has been predominantly exploited in Spectre-type
attacks [22, 51, 105, 164, 166, 168, 192], other side channels have been
used as well. Bhattacharyya et al. [29] demonstrated that port contention
can be used to transmit the secret data. Fustos and Yun [91] also relied
on contention-based side channels. Schwarz et al. [271] demonstrated
that timing differences introduced by the AVX unit can be exploited.
Weber et al. [318] exploited the property that an x87-FPU instruction
triggers a faster reset of the AVX unit. Further work by Schwarz et al.
[264] exploited effects of the TLB in combination with the store buffer.
Lipp et al. [183] used AMD’s cache way predictor. Finally, Ren et al. [249]
relied on the µOP cache.

Besides being able to mistrain the chosen predictor, an attacker must
also find a suitable gadget to encode the victim’s sensitive data. Several
works have explored ways to find these gadgets. For instance, several

3.1. Software-based Microarchitectural Attacks 33

works performed taint analyis [34, 157, 244] while others relied on taint
tracking [316]. Other works instead relied on symbolic execution [123, 315].
Fuzzing of instrumented binaries has also been used to detect Spectre
gadgets [223]. Finally, neural embeddings were used to both construct
and detect gadgets [295].

Our systematic evaluation of Spectre-type attacks [51] provided a
classification based on the prediction unit that the attacker mistrains, i.e.,
the Pattern History Table (PHT), Branch Target Buffer (BTB), Return
Stack Buffer (RSB), and Store-to-load forwarding (STL). In addition, we
demonstrated that several mistraining strategies exist. These mistraining
strategies allow attackers to mistrain the predictor from the same or
another address space. We showed that shadow branches, i.e., branches
that are congruent to the victim branch, can also be used for mistraining.

Meltdown

The second class of transient-execution attacks is Meltdown-type attacks,
which exploit that data is erroneously forwarded during out-of-order
execution following a fault or assist. These events require a pipeline flush or
a selective replay of instructions [180]. However, while still in the transient
domain, the attacker can encode the data in the microarchitectural state
and recover it afterward using traditional side-channel attacks. Spectre-
type attacks require an attacker to trick the victim application into
performing the secret access and subsequent encoding. Meltdown-type
attacks are bypassing protections to directly access the victim’s sensitive
data. Hence, no gadgets are necessary as all the code is under the direct
control of the attacker.

The original Meltdown attack [182], which we classified in our work
as Meltdown-US [51], performs an access to a kernel address from an
unprivileged userspace application. Due to the lack of privileges, i.e.,
access to another security domain, the load faults and triggers an exception.
However, exceptions are only raised at the retirement of the faulting
instruction. This leaves enough time for subsequent transient instructions
in the out-of-order execution to encode the loaded, usually inaccessible
data into the cache. The attacker can recover the encoded data by using
traditional cache side channels, such as Flush+Reload.

While Meltdown-US breaks down the isolation between kernel and
userspace, Foreshadow [302] exploited effects around the present bit in
the page tables to attack SGX enclaves. Kiriansky and Waldspurger [164]
explored Meltdown effects around the read-only bit.

34 Chapter 3. State of the Art

Meltdown-type attacks have been used to leak data from various
domains: the operating system or hypervisor [53, 185, 257, 269, 321],
virtual machines [269, 286], other userspace applications [185, 257, 269,
286], and trusted-execution environments [245, 258, 269, 302]. In these
attacks, the L1 cache is predominantly used to leak data. However, several
works have studied the line-fill buffers and load ports more thoroughly [206,
257, 269] after the original Meltdown paper [185] already connected the
line-fill buffer to some leakage. With TSX Asynchronous Abort [255, 256,
258, 269], researchers have demonstrated that Intel TSX can be abused
to leak data on CPUs that contain fixes against other attack variants
discussed in the ZombieLoad paper [269]. Moghimi et al. [206] proposed a
fuzzing approach to generate new attack variants that attempt to leak from
different buffers. Various registers have also been targeted in attacks, such
as floating-point registers [145, 286] and staging buffers shared between
cores [245].

In our work [51], we systematically analyzed the remaining bits in
the page tables and other ways of triggering exceptions, which led to
the discovery of two new variants. The first exploited Meltdown effects
around Intel’s memory protection keys. The second triggered Meltdown
effects through bound-checking exceptions, which was also the first time
that AMD processors were shown to be affected by Meltdown effects. In
addition, we provided a classification based on the fault condition. The
results of subsequent work [206], which used performance counters to
understand better which hardware paths are exploited, demonstrated that
all variants fit into the provided naming scheme.

Load-Value Injection

Meltdown-type attacks directly leak sensitive data from the victim domain.
LVI-type attacks [303], on the other hand, trick the victim into revealing
its sensitive data by injecting malicious values into the victim domain.
However, LVI differs from Spectre-type attacks as no prediction history
is poisoned. Similar to Spectre-type attacks, an attacker must identify
a gadget in the victim domain that accesses and sends the sensitive
information. The gadgets required for LVI-type attacks are much simpler
than for Spectre, potentially as simple as a single load operation.

In an LVI-type attack, the victim must perform an operation that
results in a fault or assist. While these faults or assists can occur naturally
in the victim’s execution, LVI is easier to exploit in a scenario where the
attacker can easily induce them, such as in Intel SGX. In addition to

3.2. Memory Safety 35

being able to induce the fault precisely, this scenario allows the attacker
to repeatedly attempt injecting the malicious data by zero-stepping the
targeted instruction [300]. However, Van Bulck et al. [303] demonstrated
that a user-to-kernel attack is also possible.

A special case of LVI is LVI-NULL [103, 303], where it is sufficient for
the attacker to inject a zero value. CPUs containing Meltdown fixes make
this attack variant easier as the illegally loaded value is zeroed out before
being passed on to dependent instructions [50, 144].

3.2 Memory Safety

One of the oldest problems in computer security are memory safety
violations [289], which have been extensively studied. Previous work
has investigated various memory safety violations [82, 289], provides a
historical overview [306], or discusses protection mechanisms [332]. One of
the main goals of an attacker exploiting a memory safety violation is to gain
code execution on the victim machine by hijacking an application [289].
This type of attack is commonly referred to as a control-flow-hijacking
attack. They are a focus of this thesis as they can significantly impact
the kernel’s security. Specifically, this thesis focuses on hardening the
kernel by restricting a hijacked applications access to the syscall interface.
In this section, we provide a coarse overview of the state-of-the-art on
existing control-flow-hijacking attacks and defenses.

3.2.1 Control-Flow-Hijacking Attacks

A control-flow-hijacking attack consists of several steps with the goal of
redirecting control flow to an attacker-chosen location. In a first step, an
attacker exploits a memory safety violation, such as a buffer overflow, to
overwrite an existing code pointer. Typical targets are the return address
on the stack or a function pointer used by an indirect jump.

Once the code pointer has been corrupted, its value must be loaded
into the instruction pointer [289]. However, the instruction pointer can
only be modified by control-flow transfer instructions, i.e., jumps, calls,
and returns. The attacker must perform an indirect call or jump using the
corrupted pointer or execute a return instruction, which uses the modified
return address on the stack. The final step is then the execution of the
attacker-chosen malicious code.

36 Chapter 3. State of the Art

Shellcode. In the most straightforward case, the attacker injects custom,
executable code into the victim’s address space, the so-called shellcode, to
which control flow is redirected [13]. This shellcode can then exploit further
vulnerabilities to elevate privileges or simply open a reverse shell through
which the attacker can perform a variety of other attacks. AlephOne [13]
demonstrated this by overflowing a buffer on the stack with shellcode and
redirecting control flow to the buffer. However, modern CPUs provide a
non-executable bit that can be set on a page-level granularity [203, 289]. If
set, the page’s content cannot be executed by the CPU. When loading an
application, the operating system marks all pages that contain data, like
the stack or heap, as non-executable. On the other hand, code pages are
marked as executable but not writable, resulting in the W⊕X (Write XOR
Execute) policy [231]. As the attacker code is injected into the victim’s
address space as data, the code must be written to writable data pages.
The injected code can then not be executed. Due to the W⊕X policy,
already existing and executable code can also not be modified by the
attacker, providing code integrity [289]. Hence, the combination of W⊕X
and data execution prevention prevents a straight-up shellcode attack.
However, W⊕X cannot be fully enforced in the presence of just-in-time
compilation or self-modifying code [289].

Return-to-libc. Due to the above restrictions, attackers must rely
on other methods to achieve their goals. As only the victim’s code
is executable, attackers rely on the victim’s code to perform malicious
tasks, i.e., they perform a code-reuse attack. Such an attack was first
demonstrated by Solar Designer in the form of a return-to-libc (ret2libc)
attack [281]. In a ret2libc attack, an attacker redirects control flow to
a function within libc (or another mapped library) after preparing the
necessary parameters on the stack. Nergal [216] extended ret2libc attacks
to allow for unlimited chaining of function calls. However, changes to the
calling convention on x86 64 made ret2libc attacks harder as the function
arguments were no longer expected to be on the stack but in registers.
On x86 64, simply pushing all arguments onto the stack and calling a libc
function is no longer possible [171].

Borrowed Code Chunks Technique. To solve this problem, Krah-
mer [171] proposed the borrowed code chunks technique. Instead of re-using
entire functions, the approach re-uses parts of functions to fill the required
registers with the function arguments. With the registers prepared, the
attacker invokes the target function, i.e., performs a traditional ret2libc

3.2. Memory Safety 37

Return Address 1

Return Address 2

Argument 1

Argument 2

Return Address 3

Corrupted Stack

SP

Gadget 3

syscall
ret

Gadget 2

pop rsi
pop rdi
ret

Gadget 1

mov rax, 0x3b
ret

Figure 3.3: An illustration of a ROP attack. The attacker prepares the stack
with the return addresses for the individual gadgets and the required
arguments for each one.

attack. However, even ret2libc attacks performed in this way are still
limited to executing code in a straight line, i.e., no loops or branches are
possible [274].

Return-Oriented Programming. With Return-Oriented Program-
ming (ROP), Shacham [274] generalized ret2libc attacks and the borrowed
code chunks technique. In a ROP attack, an attacker does not invoke
any functions but instead re-uses existing code chunks, so-called gadgets,
to perform the attack (Figure 3.3). Each such gadget is a sequence of
instructions followed by a return instruction, e.g., pop rdi; ret. On x86,
with its variable instruction length, these sequences might not have been
placed there implicitly by the compiler. We show an example of this in
Listing 3.2.1. First, the byte sequence disassembles to a simple subtraction
with a register and a constant value. However, by skipping the first byte,
we obtain a sequence that moves a value into the al register, pops a
value into the rdi register, and finally executes a return instruction. This
property of x86 allows an attacker to use gadgets that are not intended by
the compiler. Barrantes et al. [21] have shown that a random byte stream
can be interpreted as a valid instruction sequence with a high probabil-
ity due to the denseness of the x86 instruction encodings. Furthermore,
Shacham [274] and Homescu et al. [131] demonstrated that, in a large
enough binary, ROP is Turing complete. Hence, ROP provides a fully

38 Chapter 3. State of the Art

1 // 2d b0 03 5f c3

2 sub eax , 0xc35f03b0

3

4 // b0 03 5f c3

5 mov al , 0x3

6 pop rdi

7 ret

Listing 3.2.1: Disassembling the first byte sequence results in a simple sub
instruction with a register and a constant value. However, skip-
ping the first byte of the sequence results in a ROP gadget that
moves a value into al, pops a value into rdi, and then returns.

functional language, allowing an attacker to perform any task necessary
in an attack.

ROP Variants. While ROP has been demonstrated to be a power-
ful attack and one that is hard to eliminate, other variants also exist.
For instance, Checkoway et al. [57] and Bletsch et al. [33] demonstrated
Jump-Oriented Programming (JOP), a code-reuse attack that uses jump
instructions instead of returns. Abusing indirect jump instructions can
eliminate the requirement of modifying the stack, although it is still
possible. However, maintaining control of the program’s execution is
significantly more difficult than in ROP attacks. Bletsch et al. [33] solve
this problem with a new type of gadget, called the dispatcher gadget, which
is responsible for determining which gadget is to be invoked next. It does
this by relying on a dispatcher table and a virtual program counter. To
stay in control, the dispatcher gadget ensures that each invoked gadget
transfers control back to it at the end of its execution by executing a
jump instruction. Checkoway et al. [57] instead rely on a trampoline
gadget, which relies on stack modifications instead of a dispatcher table
and virtual program counter. Pure-Call Oriented Programming (PCOP)
is a variant of a code-reuse attack in which gadgets do not end with
a return or jump instruction but a call instruction [252]. Their work
improved upon previous Call-Oriented Programming work, which still
required jump and return gadgets [33, 56, 106]. Bittau et al. [30] proposed
Blind ROP (BROP), an attack technique that allows an attacker to find
ROP gadgets remotely in an unknown binary. One requirement of BROP
is that the service must restart in the case of an error. A successful BROP
attack results in a ROP chain that executes the write syscall and sends
the unknown binary to the attacker. Subsequent work improved BROP

3.2. Memory Safety 39

in the form of Signal Enhanced Blind Return-Oriented Programming
(SeBROP) [338]. Bosman and Bos [37] proposed another alternative of
ROP called Sigreturn-Oriented Programming (SROP). The idea is to push
a forged sigcontext structure onto the stack, overwriting the correct return
address with the address of a gadget. Once constructed, the attacker
executes the sigreturn syscall to complete the attack. The advantage
of SROP is that a single execution of the sigreturn syscall can set all
necessary registers for the attack. Schuster et al. [261] proposed Coun-
terfeit Object-Oriented Programming (COOP). COOP attacks rely on
an attacker chaining existing C++ virtual functions together to perform
malicious tasks. Carlini et al. [55] proposed Printf-Oriented Programming,
demonstrating that a single call to printf() enables Turing-complete com-
putations. Loop-Oriented Programming [174] relies on entire functions as
building blocks, i.e., gadgets. These gadgets are chained together so that
control flow follows the call-ret-pairing process. One gadget, a function
containing a loop, is used to chain all other gadgets together. This function
is called a loop gadget.

ROP as a Building Block. While ROP and its variants -complete [37,
131, 261, 274], performing the entire attack in this form is tedious. Hence,
attackers often use ROP as a building block to enable shellcode. In such
an attack, the attacker first injects shellcode into the victim’s address
space. Next, the attacker builds a ROP chain that moves the shellcode
address, its size, and the correct permissions into the registers defined
by the calling convention. Once the registers are prepared, the attacker
performs an mprotect syscall to make the shellcode executable. The final
step of the ROP chain is to return to the shellcode location to start its
execution.

Building a ROP chain is a critical part of these attacks. While manually
building the ROP chain is possible, it requires significant manual effort
and is error-prone. Hence, tools exist that help in the building of ROP
chains [253, 273].

Benign Use Cases of ROP. While ROP has been proposed as a
powerful attack technique, a significant amount of research relies on ROP
to perform benign tasks. For instance, several works have evaluated
ROP in the context of software watermarking [16, 191]. Borrello et al.
[36], Mu et al. [212], and Shrivastava and Hota [278] used it to obfuscate
control flow. Andriesse et al. [17] and Shrivastava and Hota [277] employed

40 Chapter 3. State of the Art

ROP for code integrity verification. Finally, ROP has also been used for
steganography [190].

Control-Flow-Hijacking Attacks on the Kernel

Control-flow-hijacking attacks have been demonstrated on userspace ap-
plications and the kernel. Due to its elevated privileges, gaining control of
kernel execution is extremely valuable to attackers. While the previously
discussed control-flow-hijacking attacks apply to the kernel as well, addi-
tional attacks are possible. We again consider non-control-flow-hijacking
attacks on the kernel out of scope, e.g., data-only kernel exploits targeting
process credentials or page tables.

One of the most prominent examples of such an additional attack on
the kernel is return-to-user (ret2user). In a ret2user attack, an attacker
exploits a memory safety violation in kernel code to overwrite kernel data,
typically function pointers, with userspace addresses [159, 160, 236]. This
allows an attacker to redirect the kernel’s control flow to malicious code
locations in userspace. As a result, the kernel executes attacker-chosen or
controlled code with elevated privileges. Hence, ret2user attacks are an
instance of the confused deputy problem [128].

A variant of ret2user attacks are return-to-direct-mapped memory
(ret2dir) attacks [159]. These attacks allow an attacker to bypass all
protections implemented against ret2user attacks and entirely circumvent
kernel isolation. At the root of ret2dir attacks lies implicit page frame
sharing, which allows an attacker to “mirror” userspace data, e.g., the
malicious payload, in the kernel address space. Hence, an attacker can
perform the equivalent of a ret2user attack without ever reaching userspace
by simply redirecting control flow to the direct-physical map.

3.2.2 Mitigating Control-Flow-Hijacking Attacks

This section discusses proposed defenses against control-flow-hijacking
attacks. We only focus on defenses that try to restrict control-flow-
hijacking attacks. Defenses that try to prevent the memory safety violation
that leads to the hijack, e.g., buffer overflow, are considered out of scope.
While defenses against control-flow-hijacking attacks can be primarily
placed into two groups [289], i.e., code pointer integrity (CPI) and control-
flow integrity (CFI), we only focus on the latter due to its relevance to
this thesis. For a more in-depth discussion, we refer the reader to prior
work [44, 289].

3.2. Memory Safety 41

Address Space Layout Randomization. Control-flow-hijacking at-
tacks require an attacker to have precise knowledge of virtual addresses
so that control flow can be correctly redirected. Address Space Layout
Randomization (ASLR) is a probabilistic countermeasure in which every
newly launched process has a new randomized virtual address space, i.e.,
the location of the code segment, libraries, stack, and heap are randomized
upon program launch [230]. This imposes restrictions on an attack as
ASLR needs to be broken before an attacker can, for instance, prepare
the stack with the correct return addresses for a ROP attack. However,
several works have demonstrated that ASLR can be bypassed via pointer
leaks [74, 280] or even brute-forced [30, 38, 95, 108]. Still, most major
operating systems have enabled ASLR by default [108]

Stack Canary. One of the best-known control-flow-hijacking attacks
is the previously discussed stack smashing attack by AlephOne [13, 289].
Stack canaries are intended to mitigate the attack [65]. The stack canary,
a secret value, is placed on the stack between local variables and the
return address [289]. If an attacker naively modifies the return address on
the stack, the canary is likely modified as well. Before returning from a
function, the stack canary is checked, and a deviation from the original
value results in program termination. However, an attacker can leak the
canary using an arbitrary read or format string vulnerability. Additionally,
they can brute-force the canary as it stays the same after a fork [194].
In either case, the attacker can then corrupt the stack while keeping the
canary intact.

Both gcc and clang can automatically add stack canaries if requested
by the application developer [124]. The Linux kernel provides a build
option that enables the feature for the kernel [161].

Shadow Stack. An alternative solution that is not vulnerable to in-
formation leaks and overwriting of the canary are shadow stacks [307].
With a shadow stack, each call to a function creates two copies of the
return address: one on the usual stack and one on the shadow stack.
Before returning from a function, the two values are compared, and a
deviation again results in program termination. Shadow stacks increase
the difficulty of an attack as the attacker must be able to corrupt both
locations. Chiueh and Hsu [62] propose to either use guard pages to
protect the shadow stack or to modify its write permissions. However,
the latter introduces significant performance overheads. With CET, Intel
provides hardware support for shadow stacks [141]. Entries on the CET

42 Chapter 3. State of the Art

shadow stack cannot be modified by regular store instructions, making
CET more secure than software-only shadow stacks.

Burrow et al. [45] provide a comprehensive analysis of different shadow
stack mechanisms.

Control-Flow Integrity. Stack canaries and shadow stacks only protect
function returns, but not indirect control-flow transfers to new targets.
To solve this problem, Abadi et al. [1] introduced the concept of Control-
Flow Integrity (CFI). CFI tries to limit the targets of indirect control-flow
transfer instructions, i.e., the forward edge, and returns, i.e., the backward
edge, to a set of pre-determined valid targets. If successful, an attack is
stopped before the attacker can, for instance, redirect control flow to the
injected shellcode.

The set of valid targets is typically determined using static analysis [1,
44]. Each destination of an indirect control-flow transfer is instrumented
with an ID, identifying an equivalence class. Indirect call sites within the
application are instrumented with runtime checks that verify whether the
destination has the correct ID. This ensures that the called target is part
of the pre-determined set. In the proposal by Abadi et al. [1], function
returns are protected using the previously discussed shadow stack concept.

CFI can be subdivided into two groups: coarse- and fine-grained
CFI [55]. In a fine-grained CFI implementation, the set of pre-determined
targets is as small as possible, i.e., an application can deviate much
less from the intended control flow. On the other hand, coarse-grained
solutions allow for a more relaxed estimation of target destinations, i.e., an
application can deviate further before an error is detected. Coarse-grained
solutions only validate that function returns target a location following a
call instruction while the fine-grained solution by Abadi et al. [1] ensures
that control is returned to the instruction following the actual caller [75].
However, the advantage of coarse-grained solutions is that they incur less
of a performance penalty, but this comes at the cost of reduced security [75,
98, 337].

Since the original proposal by Abadi et al. [1], CFI has been a popular
research field which resulted in several different solutions for kernel and
userspace [32, 39, 61, 66, 72, 73, 77, 94, 98, 154, 162, 169, 173, 178, 195,
208, 210, 218–221, 228, 232, 238, 241, 259, 294, 305, 317, 331, 333, 335,
336]. Recently, Intel released CET [141], bringing hardware-supported CFI
to commodity off-the-shelf systems. Support for CET within the Linux
kernel is in development [175]. We refer to prior work for a discussion on
the effectiveness and performance of various CFI solutions [44].

3.2. Memory Safety 43

CFI has limitations that have partially hindered its adoption in the
real world. First, several attacks have demonstrated that it can be
circumvented [56, 75, 83, 106, 107, 262]. For instance, by relying on various
types of gadgets, Göktas et al. [106] demonstrated that coarse-grained CFI
can be circumvented. Similarly, Davi et al. [75] demonstrated that several
coarse-grained CFI implementations can be circumvented even under weak
adversarial assumptions. Evans et al. [83] demonstrated that fine-grained
CFI can also be bypassed. Second, enforcing the correct control flow across
dynamically-linked libraries is a complex problem as CFI information may
not be available for these libraries [289]. Third, CFI requires a precise
Control-Flow Graph (CFG) to determine the targets of a control-flow
transfer accurately. However, obtaining a precise CFG, which requires
sound and complete pointer analysis, is an undecidable problem [246]. This
makes it necessary for CFI solutions to overapproximate the number of
possible targets, which leads to a reduction in the provided security [44, 55].
Finally, determining the effectiveness of CFI solutions is a non-trivial task.
Current solutions typically rely on the average indirect target reduction
(AIR) metric proposed by Zhang and Sekar [337]. AIR is a metric that
measures the average reduction of allowed targets across every indirect
control-flow transfer instruction. Carlini et al. [55] showed that AIR is an
imperfect metric that does not fully allow to reason about the effectiveness
of a CFI solution. The reason is that AIR only measures the average
reduction in targets but does not consider the usefulness of different
basic blocks [89]. Other proposed metrics like QuantitativeSecurity [44],
AIA [98], and CTR [213] all suffer from the same problem. However,
recent work has proposed newer metrics that consider the usefulness of
basic blocks [89].

Mitigating Control-Flow-Hijacking Attacks on the Kernel

As the kernel has complete control of the hardware and the applications
that run on top of it, it must be protected as well as possible. Hence,
the kernel applies several techniques to harden itself from being directly
compromised [161]. In addition, it also tries to limit the post-exploitation
impact in case an attacker was able to redirect control flow. Previously
discussed countermeasures like stack canaries, shadow stacks, and CFI
can also be applied to the kernel. As we discussed these concepts before,
we do not discuss them further.

44 Chapter 3. State of the Art

Boot 1

With KASLR

Boot 2

Boot 3

Without KASLR

Figure 3.4: KASLR randomizes the location of the kernel text segment once at
every boot. Without KASLR, the text segment is always loaded at
the same location.

KASLR. Control-flow-hijacking attacks require an attacker to know
the addresses of relevant functions and data. Like userspace ASLR, the
kernel randomizes the location of various parts, e.g., the text segment and
the direct physical map, once at boot time. This is called Kernel Address
Space Layout Randomization (KASLR) and is illustrated in Figure 3.4
for the kernel’s text segment. Accardi [2] proposed a function-granular
KASLR solution that randomizes the kernel code on a per-function level,
but this is not used by default.

With KASLR active, attacks that rely on precise information of kernel
virtual addresses become unlikely in the absence of a KASLR break, as an
access to an invalid address most likely results in a system crash. However,
several KASLR breaks have been demonstrated that exploit side-channel
information [50, 53, 85, 118, 134, 155, 163, 170, 181, 183, 184, 264, 318].
With KAISER (renamed to KPTI by the kernel developers), Gruss et al.
[117] proposed an approach that tries to prevent side-channel attacks on
KASLR. KAISER ultimately protects against the previously discussed
Meltdown attack [104, 185].

In this thesis, we demonstrate a novel microarchitectural KASLR break,
called EchoLoad, which abuses the incomplete hardware fixes implemented
by Intel for Meltdown [50]. EchoLoad can even de-randomize the kernel
location in the presence of KPTI as parts of the kernel must remain
mapped. We propose a mitigation, called Fake Load Address REspone
(FLARE), which prevents all microarchitectural KASLR breaks known at
the time, including our new EchoLoad attack.

3.2. Memory Safety 45

KERNEXEC and UDEREF. KERNEXEC and UDEREF [283, 292,
293] are two patches proposed by the PaX Team that prevent an attacker
from redirecting control flow from kernel space to userspace. The imple-
mentation of the two patches differs based on the underlying architecture.
On x86, the patches use segmentation, mapping the kernel into a segment
that returns a fault when privileged code accesses userspace. On x86 64,
userspace is mapped into a non-executable area upon entering the kernel
and restored on exit. However, remapping userspace can incur a significant
performance overhead [159].

SMAP and SMEP. Preventing access from privileged to unprivileged
memory is an important security feature that must also be fast. Therefore,
modern Intel CPUs provide hardware support to improve performance
significantly. With Supervisor Mode Execute Protection [161] (SMEP),
Intel introduced a feature that prevents the kernel from executing userspace
code. Supervisor Mode Access Prevention [64] (SMAP), on the other hand,
prevents the kernel from accessing userspace. If active, any attempt to
access or execute userspace memory triggers a page fault. Other vendors,
such as ARM, provide similar features, i.e., Privileged Execute-Never [19]
(PXN) and Privileged Access-Never (PAN) [18], respectively. On Linux,
these features are active by default [161, 176].

kGuard. To prevent ret2user attacks, Kemerlis et al. [160] proposed
kGuard. kGuard is a compiler plugin that identifies all indirect control-
flow transfers within the kernel and instruments them with Control-Flow
Assertions (CFA). Before any indirect control-flow transfer, the CFAs
perform a runtime check to determine whether the target is located
within the kernel, i.e., they ensure that control flow is never redirected
to userspace. Additionally, kGuard includes two code diversification
techniques to thwart attacks that rely on bypass trampolines, i.e., an
indirect branch of which the attacker has control over the operands. The
introduced diversification techniques randomize, at compile and runtime,
the locations of the indirect branches and their CFAs.

XPFO. kGuard and other defenses were successfully bypassed by the
ret2dir attack proposed by Kemerlis et al. [159]. Hence, they proposed a
separate solution for ret2dir attacks called Exclusive Page-Frame Owner-
ship (XPFO). The idea behind XPFO is that at any point in time, only
one context, i.e., kernel or userspace, can have a mapping to the physical
page. If the kernel allocates memory for userspace, the kernel removes

46 Chapter 3. State of the Art

its own mapping to the same physical page in the direct physical map.
An attacker performing a ret2dir attack can no longer redirect control
flow to the “mirrored” page as this results in a fault. XPFO also ensures
that all pages freed by userspace are zeroed out and returned to the direct
physical map.

Syscall Filtering. Reducing the attack surface of the kernel is one of
the goals of the Kernel Self-Protection Project [161] A part of this is to
limit access to the interfaces exposed to (potentially hijacked) userspace
applications, such as the syscall interface. Several works have been pub-
lished on syscall checking [3, 14, 70, 88, 93, 102, 109, 153, 179, 237, 242,
309], but frequently rely on syscall interposition. In syscall interposition
systems, the syscall is intercepted and redirected to a secure montior, e.g.,
a trusted userspace application, which checks and performs the syscall
on the application’s behalf. A significant drawback of these systems is
the increased runtime. Hence, the Linux Kernel uses none of them and
instead relies on the Secure Computing (Seccomp) interface to restrict a
userspace application’s access to syscalls [81]. In the beginning, seccomp
only allowed a static set of 4 syscalls, i.e., read, write, exit, and sigreturn.
However, building a complex application that only uses these 4 syscalls is
impractical.

With “seccomp mode 2”, i.e., “seccomp filter mode”, the kernel devel-
opers extended seccomp so that a userspace application can inform the
kernel about the syscalls it intends to perform over its lifetime. Seccomp
requires the developer to specify these resulting filters in the Berkeley
Packet Filter [200] (BPF) language. Since this change, several large-
scale projects have integrated seccomp, such as browsers [63, 211] and
Android [138]. However, adoption in other projects is slow as seccomp
requires a developer to manually identify the set of syscalls required by
an application, which is a labor-intensive and error-prone task if done
manually.

Seccomp has several limitations. While seccomp can filter syscalls not
just by their number but also their arguments, it is limited to arguments
that are fully contained in a register, i.e., integers. Arguments not fully
contained in a register, like strings or structs, cannot be checked due to
time-of-check-time-of-use (TOCTOU) vulnerabilities [201, 265]. Filtering
string values, which is of interest for syscalls like the exec* syscalls, is
not possible. Due to the reliance on BPF, seccomp is stateless, i.e., every
syscall is checked independent of previously executed syscalls. Therefore,
every syscall that is part of the filter can be executed at any point in time

3.2. Memory Safety 47

and originate from any location, i.e., also possible to invoke a syscall from
injected shellcode or unaligned instructions.

Multiple papers in this thesis improve upon seccomp. First, we pro-
pose a solution, called Chestnut, that automatically extracts the set of
syscalls an application performs, either during compilation or by stat-
ically analyzing an existing binary [52]. Others have proposed similar
approaches in concurrent work [76, 100, 101, 137, 226, 227]. Second, we
propose Domain Page-Table Isolation (DPTI), a method for dynamic
and time-restricted isolation. DPTI allows the kernel to restrict syscalls
based on complex syscall arguments which are not fully contained in a
register [54]. For instance, a kernel employing DPTI can restrict the
applications that can be launched via the exec* syscalls. DPTI does not
require hardware changes or features that are not available in commodity
systems. Instead, it only requires the memory isolation already enforced
by the MMU. Finally, we propose the concept of Syscall-Flow-Integrity
Protection (SFIP) [47]. Compared to seccomp, SFIP provides integrity to
user-kernel transitions, enforces the syscall flow of an application through
syscall sequences, and enforces the origin of individual syscalls. Enforcing
an application’s syscall flow also partially limits its control flow. SFIP is
fully compatible with CFI and provides additional protection if userspace
CFI has been circumvented. Enforcing syscall origins removes the possi-
bility of an attacker using syscalls in injected shellcode or via unaligned
instructions. In addition, every individual syscall is restricted to a pre-
determined set of locations, i.e., mprotect cannot be invoked through a
syscall instruction belonging to write.

4
Conclusion

In this thesis, we researched methods to harden the kernel against unpriv-
ileged attackers performing microarchitectural or control-flow-hijacking
attacks. Our results allow us to draw 3 conclusions and provide directions
for future research.

Existing Defenses are Circumventable. In this thesis, we showed
that existing defenses against microarchitectural attacks can be circum-
vented [50, 51]. We demonstrated that the majority of proposed defenses
against transient-execution attacks do not mitigate the attack as they only
focus on the cache as the communication channel. Hence, an attacker can
easily circumvent the defense by simply relying on another communication
channel, such as port contention [12, 29]. Furthermore, we showed that the
incomplete hardware mitigation for Meltdown even causes problems for
the kernel as it allows an attacker to derandomize it with perfect accuracy.

Future work should investigate more defensive mechanisms that target
the actual root cause instead of only focusing on the communication
channel. However, the security implications of these new defenses must
also be considered to ensure they do not cause additional problems.

Ease of Use. Defenses like seccomp can harden the kernel by limiting
the exposed attack surface [161]. However, its problem is that it is hard to
use in large-scale applications. A developer must have detailed knowledge

49

50 Chapter 4. Conclusion

of the application and its used libraries to identify all necessary syscalls.
We demonstrated that this manual process can be reduced to an automated
one [47, 52], making it more likely to be used in real-world applications.
Unfortunately, this automation comes at the cost of precision due to the
automated construction of the Control-Flow Graph (CFG). Generating a
precise CFG in the presence of indirect control-flow transfers is known to be
an undecidable problem [246]. This can result in overapproximation, i.e.,
the provided security is not as high as theoretically possible. Nevertheless,
a reduced protection is better than no protection at all. Any progress
in precise CFG construction significantly improves the security of the
automated approaches proposed in this thesis.

We also demonstrated a concept that allows for complex syscall ar-
guments to be safely filtered [54] but relied on manual identification of
the important arguments. Future work should investigate whether this
process can be automated as well.

Similar Ideas, Different Contexts. CFI is a defensive mechanism
that attempts to limit the control flow of an application [1]. While
CFI has been demonstrated on the kernel as well [77, 98, 178, 210], we
demonstrated that a similar idea can be applied to limit the attack surface
exposed by the kernel. Instead of enforcing an application’s control flow,
we enforce its correct syscall flow so that only valid sequences of syscalls
are possible [47]. Therefore, we harden the kernel by better restricting a
userspace application’s access to the syscall interface.

Future work can investigate whether other defensive mechanisms are
applicable to the kernel, either to limit its exposed attack surface or to
remove the impact of bugs in the kernel itself.

References 51

References

[1] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti.
“Control-Flow Integrity.” In: CCS. 2005.

[2] Accardi, Kristen Carlson. Function Granular KASLR. 2020.

[3] Anurag Acharya and Mandar Raje. “MAPbox: Using Parame-
terized Behavior Classes to Confine Untrusted Applications.” In:
USENIX Security Symposium. 2000.

[4] Onur Acıiçmez. “Advances in Side-Channel Cryptanalysis: Mi-
croArchitectural Attacks.” PhD thesis. Oregon State University,
2007.

[5] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. “New
Results on Instruction Cache Attacks.” In: CHES. 2010.

[6] Onur Acıiçmez and Çetin Kaya Koç. “Trace-Driven Cache At-
tacks on AES (Short Paper).” In: International Conference on
Information and Communications Security. 2006.

[7] Onur Acıiçmez and Werner Schindler. “A Vulnerability in RSA
Implementations Due to Instruction Cache Analysis and Its Demon-
stration on OpenSSL.” In: CT-RSA. 2008.

[8] Onur Acıiçmez. “Yet Another MicroArchitectural Attack: Exploit-
ing I-cache.” In: CSAW. 2007.

[9] Onur Acıiçmez and Cetin Kaya Koç. “Microarchitectural attacks
and countermeasures.” In: Cryptographic Engineering. 2009.

[10] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. “Predict-
ing secret keys via branch prediction.” In: CT-RSA. 2007.

[11] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj
Rohatgi. “The EM side—channel (s).” In: CHES. 2002.

[12] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. “Port Contention for Fun
and Profit.” In: S&P. 2019.

[13] AlephOne. “Smashing the Stack for Fun and Profit.” In: Phrack
(1996).

[14] Albert Alexandrov, Paul Kmiec, and Klaus Schauser. Consh: Con-
fined Execution Environment for Internet Computations. Tech. rep.
The University of California, Santa Barbara, 1999.

52 Chapter 4. Conclusion

[15] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van
de Pol, and Yuval Yarom. “Amplifying Side Channels Through
Performance Degradation.” In: ACSAC. 2016.

[16] Ashwag Alrehily and Vijey Thayananthan. “Software watermarking
based on return-oriented programming for computer security.” In:
International Journal of Computer Applications (2017).

[17] Dennis Andriesse, Herbert Bos, and Asia Slowinska. “Parallax:
Implicit code integrity verification using return-oriented program-
ming.” In: DSN. 2015.

[18] ARM. ARM Architecture Reference Manual Supplement ARMv8.1,
for ARMv8-A architecture profile. ARM Limited, 2016.

[19] ARM Limited. ARM Architecture Reference Manual. ARMv7-A
and ARMv7-R edition. ARM Limited, 2012.

[20] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and
Cristiano Giuffrida. “Branch History Injection: On the Effective-
ness of Hardware Mitigations Against Cross-Privilege Spectre-v2
Attacks.” In: USENIX Security Symposium. 2022.

[21] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, and
Darko Stefanović. “Randomized Instruction Set Emulation.” In:
TISSEC (2005).

[22] Mohammad Behnia et al. “Speculative Interference Attacks: Break-
ing Invisible Speculation Schemes.” In: ASPLOS. 2021.

[23] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. “Dune: Safe User-level Access
to Privileged CPU Features.” In: OSDI. 2012.

[24] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way.” In: CHES. 2014.

[25] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep. 2005.
url: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[26] Johann Betz, Dirk Westhoff, and Günter Müller. “Survey on covert
channels in virtual machines and cloud computing.” In: Trans.
Emerg. Telecommun. Technol. (2017).

[27] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopad-
hyay. “Hardware prefetchers leak : A revisit of SVF for cache-timing
attacks.” In: MICRO. 2012.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References 53

[28] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Koruyeh, Nael
Abu-Ghazaleh, Chengyu Song, and Mathias Payer. “SpecROP:
Speculative Exploitation of ROP Chains.” In: RAID. 2020.

[29] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias
Payer, and Anil Kurmus. “SMoTherSpectre: exploiting speculative
execution through port contention.” In: CCS. 2019.

[30] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières,
and Dan Boneh. “Hacking blind.” In: S&P. 2014.

[31] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp.
“Wedge: Splitting Applications into Reduced-Privilege Compart-
ments.” In: NSDI. 2008.

[32] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. “Mitigating Code-
Reuse Attacks with Control-Flow Locking.” In: ACSAC. 2011.

[33] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai
Liang. “Jump-oriented programming: a new class of code-reuse
attack.” In: AsiaCCS. 2011.

[34] Roderick Bloem, Swen Jacobs, and Yakir Vizel. “Efficient
Information-Flow Verification Under Speculative Execution.” In:
Symposium on Automated Technology for Verification and Analysis.
2019.

[35] Joseph Bonneau and Ilya Mironov. “Cache-collision timing attacks
against AES.” In: CHES. 2006.

[36] Pietro Borrello, Emilio Coppa, and Daniele Cono D’Elia. “Hiding in
the Particles: When Return-Oriented Programming Meets Program
Obfuscation.” In: DSN. 2021.

[37] Erik Bosman and Herbert Bos. “Framing Signals - A Return to
Portable Shellcode.” In: S&P. 2014.

[38] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector.” In: S&P. 2016.

[39] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. “Protecting
C++ Dynamic Dispatch Through VTable Interleaving.” In: NDSS.
2016.

[40] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software Grand
Exposure: SGX Cache Attacks Are Practical.” In: WOOT. 2017.

54 Chapter 4. Conclusion

[41] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. “RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks.” In: USENIX Security
Symposium. 2020.

[42] Samira Briongos, Pedro Malagón, Juan-Mariano de Goyeneche,
and Jose M. Moya. “Cache Misses and the Recovery of the Full
AES 256 Key.” In: Applied Sciences (2019).

[43] Billy Brumley and Risto Hakala. “Cache-Timing Template At-
tacks.” In: AsiaCrypt. 2009.

[44] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael
Franz, Stefan Brunthaler, and Mathias Payer. “Control-Flow In-
tegrity: Precision, Security, and Performance.” In: ACM Computing
Surveys (2017).

[45] Nathan Burow, Xinping Zhang, and Mathias Payer. “SoK: Shining
light on shadow stacks.” In: S&P. 2019.

[46] Alejandro Cabrera Aldaya, Cesar Pereida Garćıa, Luis Manuel
Alvarez Tapia, and Billy Bob Brumley. “Cache-Timing Attacks on
RSA Key Generation.” In: CHES (2019).

[47] Claudio Canella, Sebastian Dorn, Daniel Gruss, and Michael
Schwarz. “SFIP: Coarse-Grained Syscall-Flow-Integrity Protection
in Modern Systems.” In: arXiv:2202.13716 (2022).

[48] Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. “The
Evolution of Transient-Execution Attacks.” In: GLSVLSI. 2020.

[49] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss,
and Khaled N. Khasawneh. “Evolution of Defenses against
Transient-Execution Attacks.” In: GLSVLSI. 2020.

[50] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. “KASLR: Break It, Fix It, Repeat.”
In: AsiaCCS. 2020.

[51] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Transient
Execution Attacks and Defenses.” In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019.

References 55

[52] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
“Automating Seccomp Filter Generation for Linux Applications.”
In: CCSW. 2021.

[53] Claudio Canella et al. “Fallout: Leaking Data on Meltdown-resistant
CPUs.” In: CCS. 2019.

[54] Canella, Claudio and Kogler, Andreas and Giner, Lukas and Gruss,
Daniel and Schwarz, Michael. “Domain Page-Table Isolation.” In:
arXiv:2111.10876 (2021).

[55] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. “Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity.” In: USENIX Security Symposium. 2015.

[56] Nicholas Carlini and David A Wagner. “ROP is Still Dangerous:
Breaking Modern Defenses.” In: USENIX Security Symposium.
2014.

[57] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: CCS. 2010.

[58] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. “SgxPectre Attacks: Stealing In-
tel Secrets from SGX Enclaves via Speculative Execution.” In:
EuroS&P. 2019.

[59] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. “Shreds: Fine-
Grained Execution Units with Private Memory.” In: S&P. 2016.

[60] Chih-Cheng Cheng. “The schemes and performances of dynamic
branch predictors.” In: Berkeley Wireless Research Center, Tech.
Rep (2000).

[61] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert
H Deng. “ROPecker: A Generic and Practical Approach For De-
fending Against ROP Attack.(2014).” In: NDSS. 2014.

[62] Tzi-cker Chiueh and Fu-Hau Hsu. “RAD: A compile-time solu-
tion to buffer overflow attacks.” In: Conference on Distributed
Computing Systems. 2001.

[63] Chromium. Linux Sandboxing. url: https : / / chromium .

googlesource . com / chromium / src / + / 0e94f26e8 / docs / linux _

sandboxing.md.

[64] Jonathan Corbet. Supervisor mode access prevention. 2012. url:
https://lwn.net/Articles/517475/.

https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://lwn.net/Articles/517475/

56 Chapter 4. Conclusion

[65] Crispan Cowan et al. “Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks.” In: USENIX Security
Symposium. 1998.

[66] John Criswell, Nathan Dautenhahn, and Vikram Adve. “KCoFI:
Complete control-flow integrity for commodity operating system
kernels.” In: S&P. 2014.

[67] Patrick Cronin and Chengmo Yang. “A Fetching Tale: Covert
Communication with the Hardware Prefetcher.” In: HOST. 2019.

[68] Yujie Cui, Chun Yang, and Xu Cheng. “Abusing Cache Line Dirty
States to Leak Information in Commercial Processors.” In: HPCA.
2022.

[69] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
“Cachequote: Efficiently recovering long-term secrets of SGX EPID
via cache attacks.” In: CHES. 2018.

[70] Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitaram.
Chakravyuha (CV): A sandbox operating system environment for
controlled execution of alien code. Tech. rep. 1997.

[71] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. “Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation.” In: ASPLOS.
2015.

[72] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer,
Thorsten Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. “MoCFI: A Framework to Mitigate Control-Flow Attacks
on Smartphones.” In: NDSS. 2012.

[73] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. “Hardware-
assisted fine-grained control-flow integrity: Towards efficient protec-
tion of embedded systems against software exploitation.” In: DAC.
2014.

[74] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin
Z Snow, and Fabian Monrose. “Isomeron: Code Randomization
Resilient to (Just-In-Time) Return-Oriented Programming.” In:
NDSS. 2015.

References 57

[75] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian
Monrose. “Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection.” In: USENIX Security
Symposium. 2014.

[76] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fon-
seca, and Vasileios P. Kemerlis. “sysfilter: Automated System Call
Filtering for Commodity Software.” In: RAID. 2020.

[77] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-
Erik Ekberg. “Camouflage: Hardware-assisted CFI for the ARM
Linux kernel.” In: DAC. 2020.

[78] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
“Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX.” In: USENIX Security Symposium. 2017.

[79] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel
Gruss. “Rapid Prototyping for Microarchitectural Attacks.” In:
USENIX Security Symposium. 2022.

[80] Eclypsium. System Management Mode Speculative Execution At-
tacks. 2018. url: https://blog.eclypsium.com/2018/05/17/system-
management-mode-speculative-execution-attacks/.

[81] Jake Edge. A seccomp overview. 2015. url: https://lwn.net/

Articles/656307/.

[82] Úlfar Erlingsson, Yves Younan, and Frank Piessens. “Low-Level
Software Security by Example.” In: Handbook of Information and
Communication Security. 2010.

[83] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe,
Martin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos.
“Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow
Integrity.” In: CCS. 2015.

[84] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Covert channels through branch predictors: a feasibility study.”
In: HASP. 2015.

[85] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR.”
In: MICRO. 2016.

[86] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. “BranchScope: A New Side-Channel At-
tack on Directional Branch Predictor.” In: ASPLOS. 2018.

https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/

58 Chapter 4. Conclusion

[87] Agner Fog. The microarchitecture of Intel, AMD, and VIA
CPUs: An optimization guide for assembly programmers and com-
piler makers. 2021. url: https : / / www . agner . org / optimize /

microarchitecture.pdf.

[88] T. Fraser, L. Badger, and M. Feldman. “Hardening COTS software
with generic software wrappers.” In: DISCEX. 2000.

[89] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-
Reza Sadeghi. “CFINSIGHT: A Comprehensive Metric for CFI
Policies.” In: NDSS. 2022.

[90] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. “IMIX: In-Process Memory Isolation EXten-
sion.” In: USENIX Security Symposium. 2018.

[91] Jacob Fustos, Michael Bechtel, and Heechul Yun. “SpectreRewind:
Leaking Secrets to Past Instructions.” In: ASHES. 2020.

[92] Cesar Pereida Garćıa and Billy Bob Brumley. “Constant-Time
Callees with Variable-Time Callers.” In: USENIX Security Sympo-
sium. 2017.

[93] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. “Ostia: A
Delegating Architecture for Secure System Call Interposition.” In:
NDSS. 2004.

[94] Robert Gawlik and Thorsten Holz. “Towards automated integrity
protection of C++ virtual function tables in binary programs.” In:
ACSAC. 2014.

[95] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Gar-
many, and Thorsten Holz. “Enabling client-side crash-resistance to
overcome diversification and information hiding.” In: NDSS. 2016.

[96] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware.” In: Journal of Cryptographic Engineering
(2016).

[97] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware.” In: Journal of Cryptographic Engineering
(2018).

[98] Ge, Xinyang and Talele, Nirupama and Payer, Mathias and Jaeger,
Trent. “Fine-Grained Control-Flow Integrity for Kernel Software.”
In: Euro S&P. 2016.

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

References 59

[99] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom.
“Drive-by Key-Extraction Cache Attacks from Portable Code.” In:
ACNS. 2018.

[100] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. “Temporal System Call Specialization for Attack
Surface Reduction.” In: USENIX Security Symposium. 2020.

[101] Ghavamnia, Seyedhamed and Palit, Tapti and Mishra, Shachee
and Polychronakis, Michalis. “Confine: Automated System Call
Policy Generation for Container Attack Surface Reduction.” In:
RAID. 2020.

[102] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and
Thomas E. Anderson. “SLIC: An Extensibility System for Com-
modity Operating Systems.” In: USENIX ATC. 1998.

[103] Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz,
and Daniel Gruss. “Repurposing Segmentation as a Practical LVI-
NULL Mitigation in SGX.” In: USENIX Security Symposium. 2022.

[104] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). 2017. url: https://lkml.org/lkml/2017/12/4/709.

[105] Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos,
and Cristiano Giuffrida. “Speculative Probing: Hacking Blind in
the Spectre Era.” In: CCS. 2020.

[106] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: S&P. 2014.

[107] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Her-
bert Bos, and Georgios Portokalidis. “Size Does Matter: Why Using
Gadget-Chain Length to Prevent Code-Reuse Attacks is Hard.” In:
USENIX Security Symposium. 2014.

[108] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athana-
sopoulos, Georgios Portokalidis, Cristiano Giuffrida, and Herbert
Bos. “Undermining information hiding (and what to do about it).”
In: USENIX Security Symposium. 2016.

[109] Ian Goldberg, David Wagner, Randi Thomas, Eric A Brewer, et al.
“A secure environment for untrusted helper applications: Confining
the wily hacker.” In: USENIX Security Symposium. 1996.

[110] Daniel M. Gordon. “A Survey of Fast Exponentiation Methods.”
In: J. Algorithms (1998).

https://lkml.org/lkml/2017/12/4/709

60 Chapter 4. Conclusion

[111] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. “Cache Attacks on Intel SGX.” In: EuroSec. 2017.

[112] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks.” In: USENIX Security Symposium.
2018.

[113] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU.” In: NDSS. 2017.

[114] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. “Flush, Gauss, and Reload – A Cache Attack on the BLISS
Lattice-Based Signature Scheme.” In: CHES. 2016.

[115] Daniel Gruss. “Software-based Microarchitectural Attacks.” PhD
thesis. Graz University of Technology, 2017.

[116] Daniel Gruss. “Transient-Execution Attacks and Defenses.” Habili-
tation Thesis. Graz University of Technology, 2020.

[117] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR.” In: ESSoS. 2017.

[118] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR.” In: CCS. 2016.

[119] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.”
In: DIMVA. 2016.

[120] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack.” In:
DIMVA. 2016.

[121] Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian
Lettner, and Manuel Costa. “Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory.” In:
USENIX Security Symposium. 2017.

[122] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches.” In: USENIX Security Symposium. 2015.

References 61

[123] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and
Andrés Sánchez. “SPECTECTOR: Principled Detection of Specu-
lative Information Flows.” In: S&P. 2020.

[124] Serge Guelton and Siddhesh Poyarekar. Use compiler flags for stack
protection in GCC and Clang. 2022.

[125] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice.” In: S&P. 2011.

[126] Berk Gulmezoglu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Cross-VM cache attacks on AES.”
In: IEEE TMSCS (2016).

[127] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. “A Faster and More Realistic Flush+Reload Attack
on AES.” In: COSADE. 2015.

[128] Norman Hardy. “The Confused Deputy (or why capabilities might
have been invented).” In: Operating Systems Review (1988).

[129] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. “Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries.”
In: Usenix ATC. 2019.

[130] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017.

[131] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler,
and Michael Franz. “Microgadgets: Size Does Matter in Turing-
Complete Return-Oriented Programming.” In: WOOT. 2012.

[132] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018.

[133] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and
Mathias Payer. “Enforcing Least Privilege Memory Views for Mul-
tithreaded Applications.” In: CCS. 2016.

[134] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Timing
Side Channel Attacks against Kernel Space ASLR.” In: S&P. 2013.

[135] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. “Bluethunder: A 2-level Direc-
tional Predictor Based Side-Channel Attack against SGX.” In:
CHES. 2020.

62 Chapter 4. Conclusion

[136] Michael Hutter and Jörn-Marc Schmidt. “The temperature side
channel and heating fault attacks.” In: CARDIS. 2013.

[137] Takashi Iiguni, Hitoshi Kamei, and Keizo Saisho. “Sprofiler: Auto-
matic Generating System of Container-Native System Call Filtering
Rules for Attack Surface Reduction.” In: CSCI. 2021.

[138] Google Inc. Seccomp filter in Android O. 2017. url: https://

android-developers.googleblog.com/2017/07/seccomp-filter-

in-android-o.html.

[139] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Cache Attacks Enable Bulk Key
Recovery on the Cloud.” In: CHES. 2016.

[140] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud.” In: Cryptology ePrint
Archive, Report 2015/898 (2015).

[141] Intel. Control-flow Enforcement Technology Preview. Revision 2.0.
2017.

[142] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019.

[143] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[144] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018.

[145] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018.

[146] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES.” In: S&P. 2015.

[147] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Systematic
reverse engineering of cache slice selection in Intel processors.” In:
Euromicro Conference on Digital System Design. 2015.

[148] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Know Thy Neighbor: Crypto Library Detection in Cloud.”
In: PETS (2015).

[149] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Lucky 13 Strikes Back.” In: AsiaCCS. 2015.

https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html

References 63

[150] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES.” In:
RAID. 2014.

[151] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “SPOILER:
Speculative Load Hazards Boost Rowhammer and Cache Attacks.”
In: USENIX Security Symposium. 2019.

[152] Himanshi Jain, D Anthony Balaraju, and Chester Rebeiro. “Spy
Cartel: Parallelizing Evict+ Time-Based Cache Attacks on Last-
Level Caches.” In: Journal of Hardware and Systems Security
(2019).

[153] Kapil Jain and R Sekar. “User-Level Infrastructure for System
Call Interposition: A Platform for Intrusion Detection and Con-
finement.” In: NDSS. 2000.

[154] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. “SafeDispatch:
Securing C++ Virtual Calls from Memory Corruption Attacks.”
In: NDSS. 2014.

[155] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX.” In: CCS.
2016.

[156] Y. Jégou and O. Temam. “Speculative Prefetching.” In: ICS. 1993.

[157] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. “Kasper: Scanning for Generalized Tran-
sient Execution Gadgets in the Linux Kernel.” In: NDSS. 2022.

[158] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. “A high-resolution side-channel attack on last-level
cache.” In: DAC. 2016.

[159] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation.” In: USENIX
Security Symposium. 2014.

[160] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks.” In: USENIX Security Symposium. 2012.

[161] kernel.org. Kernel Self-Protection. 2022. url: https://www.kernel.
org/doc/html/latest/security/self-protection.html.

https://www.kernel.org/doc/html/latest/security/self-protection.html
https://www.kernel.org/doc/html/latest/security/self-protection.html

64 Chapter 4. Conclusion

[162] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin
Zhou, and Yueqiang Cheng. “Adaptive call-site sensitive control
flow integrity.” In: EuroS&P. 2019.

[163] Taehun Kim and Youngjoo Shin. “ThermalBleed: A Practical
Thermal Side-Channel Attack.” In: IEEE Access (2022).

[164] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

[165] Paul Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems.” In: CRYPTO. 1996.

[166] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[167] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. “No Need to Hide: Protecting Safe Regions on
Commodity Hardware.” In: EuroSys. 2017.

[168] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.

[169] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled
N Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. “SPECCFI:
Mitigating Spectre Attacks using CFI Informed Speculation.” In:
S&P. 2020.

[170] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“TagBleed: Breaking KASLR on the Isolated Kernel Address Space
using Tagged TLBs.” In: EuroS&P. 2020.

[171] Sebastian Krahmer. x86-64 buffer overflow exploits and the bor-
rowed code chunks exploitation technique. 2005.

[172] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. “NetCAT: Practical Cache Attacks
from the Network.” In: S&P. 2020.

[173] Donghyun Kwon, Jiwon Seo, Sehyun Baek, Giyeol Kim, Sunwoo
Ahn, and Yunheung Paek. “VM-CFI: Control-flow integrity for
virtual machine kernel using Intel PT.” In: International Conference
on Computational Science and Its Applications. 2018.

[174] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai
Zeng. “Loop-Oriented Programming: A New Code Reuse At-
tack to Bypass Modern Defenses.” In: 2015 IEEE Trustcom/Big-
DataSE/ISPA. 2015.

References 65

[175] Larabel, Michael. Intel CET Indirect Branch Tracking Submitted
For Linux 5.18. 2022.

[176] Larabel, Michael. Intel SMAP Comes To Try To Better Secure
Linux. 2012.

[177] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. “Inferring Fine-grained Control Flow In-
side SGX Enclaves with Branch Shadowing.” In: USENIX Security
Symposium. 2017.

[178] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. “Fine-
cfi: fine-grained control-flow integrity for operating system kernels.”
In: TIFS (2018).

[179] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray,
and J. H. Hartman. “Protecting Against Unexpected System Calls.”
In: USENIX Security Symposium. 2005.

[180] Moritz Lipp. “Exploiting Microarchitectural Optimizations from
Software.” PhD thesis. Graz University of Technology, 2021.

[181] Moritz Lipp, Daniel Gruss, and Michael Schwarz. “AMD Prefetch
Attacks through Power and Time.” In: USENIX Security Sympo-
sium. 2022.

[182] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile
Devices.” In: USENIX Security Symposium. 2016.

[183] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. “Take a Way: Explor-
ing the Security Implications of AMD’s Cache Way Predictors.”
In: AsiaCCS. 2020.

[184] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. “PLATY-
PUS: Software-based Power Side-Channel Attacks on x86.” In:
S&P. 2021.

[185] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[186] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. “Light-Weight
Contexts: An OS Abstraction for Safety and Performance.” In:
OSDI. 2016.

66 Chapter 4. Conclusion

[187] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical.” In:
S&P. 2015.

[188] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
“Thwarting Memory Disclosure with Efficient Hypervisor-Enforced
Intra-Domain Isolation.” In: CCS. 2015.

[189] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. “A
Survey of Microarchitectural Side-Channel Vulnerabilities, Attacks,
and Defenses in Cryptography.” In: ACM Comput. Surv. (2021).

[190] Kangjie Lu, Siyang Xiong, and Debin Gao. “Ropsteg: program
steganography with return oriented programming.” In: CODASPY.
2014.

[191] Haoyu Ma, Kangjie Lu, Xinjie Ma, Haining Zhang, Chunfu Jia,
and Debin Gao. “Software watermarking using return-oriented
programming.” In: AsiaCCS. 2015.

[192] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers.” In: CCS. 2018.

[193] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards. Springer
Science & Business Media, 2008.

[194] Hector Marco-Gisbert and Ismael Ripoll. “Preventing brute force
attacks against stack canary protection on networking servers.” In:
NCA. 2013.

[195] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David
Mazières. “CCFI: Cryptographically enforced control flow in-
tegrity.” In: CCS. 2015.

[196] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. “C5: Cross-Cores Cache Covert Channel.”
In: DIMVA. 2015.

[197] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. “Reverse Engineering Intel
Complex Addressing Using Performance Counters.” In: RAID.
2015.

[198] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud.” In: NDSS. 2017.

References 67

[199] Stephen McCamant and Greg Morrisett. “Evaluating SFI for a
CISC Architecture.” In: USENIX Security Symposium. 2006.

[200] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A
New Architecture for User-level Packet Capture.” In: USENIX
Winter. 1993.

[201] W. S. McPhee. “Operating system integrity in OS/VS2.” In: IBM
Systems Journal (1974).

[202] Vahid Meraji and Hadi Soleimany. “Evict+Time Attack on Intel
CPUs without Explicit Knowledge of Address Offsets.” In: ISeCure
(2021).

[203] Microsoft. Data Execution Prevention. 2021. url: https://docs.
microsoft.com/en- us/windows/win32/memory/data- execution-

prevention.

[204] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. “Mem-
Jam: A False Dependency Attack against Constant-Time Crypto
Implementations in SGX.” In: CT-RSA. 2018.

[205] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
“CacheZoom: How SGX amplifies the power of cache attacks.”
In: CHES. 2017.

[206] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
“Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis.” In: USENIX Security Symposium. 2020.

[207] Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn. “Mi-
croStache: A Lightweight Execution Context for In-Process Safe
Region Isolation.” In: RAID. 2018.

[208] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W Hamlen,
and Michael Franz. “Opaque Control-Flow Integrity.” In: NDSS.
2015.

[209] John Monaco. “SoK: Keylogging Side Channels.” In: S&P. 2018.

[210] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P
Kemerlis. “DROP THE ROP fine-grained control-flow integrity for
the Linux kernel.” In: Black Hat Asia (2017).

[211] Mozilla. Seccomp filter in Android O. 2016. url: https://wiki.

mozilla.org/Security/Sandbox/Seccomp.

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp

68 Chapter 4. Conclusion

[212] Dongliang Mu, Jia Guo, Wenbiao Ding, Zhilong Wang, Bing Mao,
and Lei Shi. “ROPOB: obfuscating binary code via return ori-
ented programming.” In: International Conference on Security and
Privacy in Communication Systems. 2017.

[213] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens
Grossklags, and Claudia Eckert. “Analyzing Control Flow Integrity
with LLVM-CFI.” In: ACSAC. 2019.

[214] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, and Guy Gogniat. “Winter is here! A
decade of cache-based side-channel attacks, detection & mitigation
for RSA.” In: Information Systems (2020).

[215] Amir Naseredini, Stefan Gast, Martin Schwarzl, Pedro Miguel
Sousa Bernardo, Amel Smajic, Claudio Canella, Martin Berger, and
Daniel Gruss. “Systematic Analysis of Programming Languages and
Their Execution Environments for Spectre Attacks.” In: ICISSP.
2022.

[216] Nergal. The advanced return-into-lib(c) explits: PaX case study.
2001.

[217] Michael Neve and Jean-Pierre Seifert. “Advances on Access-Driven
Cache Attacks on AES.” In: Selected Areas in Cryptography (SAC).
2006.

[218] Ben Niu and Gang Tan. “Modular control-flow integrity.” In: PLDI.
2014.

[219] Ben Niu and Gang Tan. “Monitor integrity protection with space
efficiency and separate compilation.” In: CCS. 2013.

[220] Ben Niu and Gang Tan. “Per-input control-flow integrity.” In: CCS.
2015.

[221] Ben Niu and Gang Tan. “RockJIT: Securing just-in-time compila-
tion using modular control-flow integrity.” In: CCS. 2014.

[222] O’Keeffe, Dan and Muthukumaran, Divya and Aublin, Pierre-Louis
and Kelbert, Florian and Priebe, Christian and Lind, Josh and
Zhu, Huanzhou and Pietzuch, Peter. Spectre attack against SGX
enclave. 2018.

[223] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. “Specfuzz: Bringing Spectre-type vulnerabilities to the
surface.” In: USENIX Security Symposium. 2020.

References 69

[224] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications.” In: CCS. 2015.

[225] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES.” In: CT-RSA. 2006.

[226] Pailoor, Shankara and Wang, Xinyu and Shacham, Hovav and Dillig,
Isil. “Automated Policy Synthesis for System Call Sandboxing.”
In: PACMPL (2020).

[227] Meghna Pancholi, Andreas D Kellas, Vasileios P Kemerlis, and
Simha Sethumadhavan. “Timeloops: System Call Policy Learning
for Containerized Microservices.” In: arXiv:2204.06131 (2022).

[228] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
“Transparent ROP Exploit Mitigation Using Indirect Branch Trac-
ing.” In: USENIX Security Symposium. 2013.

[229] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo
Kim. “libmpk: Software Abstraction for Intel Memory Protection
Keys (Intel MPK).” In: USENIX ATC. 2019.

[230] PaX Team. Address space layout randomization (ASLR). 2003.

[231] PaX Team. Design & Implementation of PAGEEXEC. 2000.

[232] Mathias Payer, Antonio Barresi, and Thomas R. Gross. “Fine-
Grained Control-Flow Integrity Through Binary Hardening.” In:
DIMVA. 2015.

[233] Arthur Perais and André Seznec. “Practical data value speculation
for future high-end processors.” In: HPCA. 2014.

[234] Colin Percival. “Cache Missing for Fun and Profit.” In: BSDCan.
2005.

[235] Cesar Pereida Garćıa, Billy Bob Brumley, and Yuval Yarom. “Make
Sure DSA Signing Exponentiations Really Are Constant-Time.”
In: CCS. 2016.

[236] Enrico Perla and Massimiliano Oldani. A Guide to Kernel Ex-
ploitation: Attacking the Core. Syngress Publishing, 2010. isbn:
1597494860.

[237] David S. Peterson, Matt Bishop, and Raju Pandey. “A Flexi-
ble Containment Mechanism for Executing Untrusted Code.” In:
USENIX Security Symposium. 2002.

70 Chapter 4. Conclusion

[238] Jannik Pewny and Thorsten Holz. “Control-flow restrictor:
Compiler-based CFI for iOS.” In: ACSAC. 2013.

[239] Joop van de Pol, Nigel P Smart, and Yuval Yarom. “Just a little
bit more.” In: CT-RSA. 2015.

[240] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K.
Roy. “Reducing set-associative cache energy via way-prediction
and selective direct-mapping.” In: MICRO. 2001.

[241] Aravind Prakash, Xunchao Hu, and Heng Yin. “vfGuard: Strict
Protection for Virtual Function Calls in COTS C++ Binaries.” In:
NDSS. 2015.

[242] Niels Provos. “Improving Host Security with System Call Policies.”
In: USENIX Security Symposium. 2003.

[243] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
“Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks.” In: CCS. 2021.

[244] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li,
Heng Yin, and Tao Wei. “SpecTaint: Speculative Taint Analysis
for Discovering Spectre Gadgets.” In: NDSS. 2021.

[245] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. “CROSSTALK: Speculative Data Leaks Across
Cores Are Real.” In: S&P. 2021.

[246] G. Ramalingam. “The Undecidability of Aliasing.” In: ACM Trans.
Program. Lang. Syst. (1994).

[247] Josyula R Rao and Pankaj Rohatgi. “EMpowering Side-Channel
Attacks.” In: IACR Cryptology ePrint Archive (2001).

[248] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and
Johanna Sepúlveda. “Side channel attack on NoC-based MPSoCs
are practical: NoC Prime+Probe attack.” In: SBCCI. 2016.

[249] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jor-
dan, Dean M. Tullsen, and Ashish Venkat. “I See Dead µops:
Leaking Secrets via Intel/AMD Micro-Op Caches.” In: ISCA. 2021.

[250] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. “Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds.” In: CCS. 2009.

[251] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. “Re-
verse Engineering the Stream Prefetcher for Profit.” In: SILM
Workshop. 2020.

References 71

[252] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour.
“Pure-Call Oriented Programming (PCOP): chaining the gadgets
using call instructions.” In: Journal of Computer Virology and
Hacking Techniques (2018).

[253] Jonathan Salwan. ROPgadget - Gadgets finder and auto-roper. 2011.
url: http://shell-storm.org/project/ROPgadget/.

[254] Sercan Sari. What are Rings in Operating Systems? Retrieved on
July 4, 2022. url: https://www.baeldung.com/cs/os-rings.

[255] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum 2 to RIDL: Rogue In-flight Data Load. 2020.

[256] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Addendum to RIDL: Rogue In-flight Data Load. 2019.

[257] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “RIDL: Rogue In-flight Data Load.” In: S&P. 2019.

[258] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. “CacheOut: Leaking Data on Intel
CPUs via Cache Evictions.” In: S&P. 2021.

[259] Robert Schilling, Pascal Nasahl, and Stefan Mangard. “FIPAC:
Thwarting Fault-and Software-Induced Control-Flow Attacks with
ARM Pointer Authentication.” In: COSADE. 2022.

[260] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss.
“Donky: Domain Keys–Efficient In-Process Isolation for RISC-V
and x86.” In: USENIX Security Symposium. 2020.

[261] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: S&P. 2015.

[262] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß,
Martin Steegmanns, Moritz Contag, and Thorsten Holz. “Evalu-
ating the effectiveness of current anti-ROP defenses.” In: RAID.
2014.

http://shell-storm.org/project/ROPgadget/
https://www.baeldung.com/cs/os-rings

72 Chapter 4. Conclusion

[263] Michael Schwarz. “Software-based Side-Channel Attacks and De-
fenses in Restricted Environments.” PhD thesis. Graz University
of Technology, 2019.

[264] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs.” In: arXiv:1905.05725 (2019).

[265] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features.” In: AsiaCCS. 2018.

[266] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Using SGX
to Conceal Cache Attacks.” In: DIMVA. 2017.

[267] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. “ConTExT: A Generic Approach
for Mitigating Spectre.” In: NDSS. 2020.

[268] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks.” In: NDSS. 2018.

[269] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling.” In: CCS. 2019.

[270] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript.” In: FC. 2017.

[271] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. “NetSpectre: Read Arbitrary Memory over Network.”
In: ESORICS. 2019.

[272] Martin Schwarzl, Claudio Canella, Daniel Gruss, and Michael
Schwarz. “ Specfuscator: Evaluating Branch Removal as a Spectre
Mitigation.” In: FC. 2021.

[273] scoding.de. Ropper - rop gadget finder and binary information tool.
2013. url: https://scoding.de/ropper/.

[274] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

https://scoding.de/ropper/

References 73

[275] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi.
“Secure In-VM Monitoring Using Hardware Virtualization.” In:
CCS. 2009.

[276] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong,
and Junbeom Hur. “Unveiling Hardware-based Data Prefetcher, a
Hidden Source of Information Leakage.” In: CCS. 2018.

[277] Rajesh Kumar Shrivastava and Chittaranjan Hota. “Lightweight
code self-verification using return-oriented programming in resilient
IoT.” In: Real-Time Data Analytics for Large Scale Sensor Data.
2020.

[278] Rajesh Kumar Shrivastava and Chittaranjan Hota. “Profile-guided
code identification and hardening using return oriented program-
ming.” In: Journal of Information Security and Applications (2019).

[279] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel
Genkin, Yossi Oren, and Yuval Yarom. “Prime+Probe 1, Java-
Script 0: Overcoming Browser-based Side-Channel Defenses.” In:
USENIX Security Symposium. 2021.

[280] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. “Just-in-time
code reuse: On the effectiveness of fine-grained address space layout
randomization.” In: S&P. 2013.

[281] Solar Designer. Getting around non-executable stack (and fix). 1997.
url: http://seclists.org/bugtraq/1997/Aug/63.

[282] Wei Song and Peng Liu. “Dynamically Finding Minimal Eviction
Sets Can be Quicker Than You Think for Side-Channel Attacks
Against the LLC.” In: RAID. 2019.

[283] Spengler, Brad. Recent ARM Security Improvements. 2013.

[284] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. “Systematic classification of side-channel attacks: a case
study for mobile devices.” In: IEEE Communications Surveys &
Tutorials 20.1 (2017), pp. 465–488.

[285] Raphael Spreitzer and Thomas Plos. “Cache-Access Pattern Attack
on Disaligned AES T-Tables.” In: COSADE. 2013.

[286] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.” In:
arXiv:1806.07480 (2018).

http://seclists.org/bugtraq/1997/Aug/63

74 Chapter 4. Conclusion

[287] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. “Mi-
croarchitectural Minefields: 4K-aliasing Covert Channel and Multi-
tenant Detection in IaaS Clouds.” In: NDSS. 2018.

[288] Jakub Szefer. “Survey of Microarchitectural Side and Covert Chan-
nels, Attacks, and Defenses.” In: Cryptology ePrint Archive, Report
2016/479 (2016).

[289] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[290] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems.
4th ed. Pearson, 2014.

[291] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert
Bos. “TLB;DR: Enhancing TLB-based Attacks with TLB Desyn-
chronized Reverse Engineering.” In: USENIX Security Symposium.
2022.

[292] PaX Team. Homepage of The PaX Team. 2012. url: https://pax.
grsecurity.net/.

[293] PaX Team. UDEREF. 2007. url: https : / / grsecurity . net /

~spender/uderef.txt.

[294] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Check-
oway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike. “Enforc-
ing Forward-Edge Control-Flow Integrity in GCC & LLVM.” In:
USENIX Security Symposium. 2014.

[295] M Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar.
“Fastspec: Scalable generation and detection of spectre gadgets
using neural embeddings.” In: EuroS&P. 2021.

[296] Robert M Tomasulo. “An efficient algorithm for exploiting multiple
arithmetic units.” In: IBM Journal of research and Development
(1967).

[297] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. “Melt-
downPrime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Protocols.” In:
arXiv:1802.03802 (2018).

[298] Eran Tromer, Dag Arne Osvik, and Adi Shamir. “Efficient Cache
Attacks on AES, and Countermeasures.” In: Journal of Cryptology
(2010).

https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://grsecurity.net/~spender/uderef.txt
https://grsecurity.net/~spender/uderef.txt

References 75

[299] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte,
Michael Sammler, Peter Druschel, and Deepak Garg. “ERIM: Se-
cure and Efficient In-process Isolation with Memory Protection
Keys.” In: USENIX Security Symposium. 2019.

[300] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Con-
trol.” In: Workshop on System Software for Trusted Execution.
2017.

[301] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. “Telling Your Secrets Without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution.” In:
USENIX Security Symposium. 2017.

[302] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution.” In:
USENIX Security Symposium. 2018.

[303] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection.” In: S&P. 2020.

[304] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. “Malicious Management Unit: Why Stopping Cache At-
tacks in Software is Harder Than You Think.” In: USENIX Security
Symposium. 2018.

[305] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
“Practical context-sensitive CFI.” In: CCS. 2015.

[306] Victor van der Veen, Nitish dutt Sharma, Herbert Bos, and Lorenzo
Cavallaro. “Memory Errors: the Past, the Present, and the Future.”
In: RAID. 2012.

[307] Vendicator. Stack Shield: A stack smashing technique protection
tool for Linux. 2011.

[308] Pepe Vila, Boris Köpf, and Jose Morales. “Theory and Practice of
Finding Eviction Sets.” In: S&P. 2019.

[309] David A. Wagner. Janus: An Approach for Confinement of Un-
trusted Applications. Tech. rep. University of California at Berkeley,
1999.

[310] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L
Graham. “Efficient software-based fault isolation.” In: ACM SOSP.
1993.

76 Chapter 4. Conclusion

[311] Jack Wampler, Ian Martiny, and Eric Wustrow. “ExSpectre: Hiding
Malware in Speculative Execution.” In: NDSS. 2019.

[312] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. “Volcano:
Stateless Cache Side-channel Attack by Exploiting Mesh Intercon-
nect.” In: arXiv:2103.04533 (2021).

[313] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu.
“Unveiling your keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries.” In: NDSS. 2019.

[314] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth
V Krishnamurthy. “PAPP: Prefetcher-Aware Prime and Probe
Side-channel Attack.” In: DAC. 2019.

[315] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas,
Tulika Mitra, and Abhik Roychoudhury. “KLEESpectre: Detect-
ing Information Leakage through Speculative Cache Attacks via
Symbolic Execution.” In: TOSEM (2020).

[316] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika
Mitra, and Abhik Roychoudhury. “oo7: Low-overhead Defense
against Spectre attacks via Program Analysis.” In: Transactions
on Software Engineering (2019).

[317] Zhi Wang and Xuxian Jiang. “Hypersafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity.” In: S&P. 2010.

[318] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz,
and Christian Rossow. “Osiris: Automated Discovery Of Microar-
chitectural Side Channels.” In: USENIX Security Symposium. 2021.

[319] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
“SGXJail: Defeating Enclave Malware via Confinement.” In: RAID.
2019.

[320] Samuel Weiser and Mario Werner. “Sgxio: Generic trusted i/o path
for intel sgx.” In: CODASPY. 2017.

[321] Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. 2018. url:
https://foreshadowattack.eu/foreshadow-NG.pdf.

[322] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud.” In: ACM Transactions on Networking (2014).

https://foreshadowattack.eu/foreshadow-NG.pdf

References 77

[323] Wenjie Xiong and Jakub Szefer. “Leaking Information Through
Cache LRU States.” In: HPCA. 2020.

[324] Wenjie Xiong and Jakub Szefer. “Survey of Transient Execution
Attacks and Their Mitigations.” In: ACM Computing Surveys
(2021).

[325] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,
Matti Hiltunen, and Richard Schlichting. “An exploration of L2
cache covert channels in virtualized environments.” In: CCSW.
2011.

[326] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. “Attack directories,
not caches: Side channel attacks in a non-inclusive world.” In: S&P.
2019.

[327] Yuval Yarom and Naomi Benger. “Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.”
In: Cryptology ePrint Archive, Report 2014/140 (2014).

[328] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014.

[329] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot
Heiser. “Mapping the Intel Last-Level Cache.” In: Cryptology ePrint
Archive, Report 2015/905 (2015).

[330] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed:
A Timing Attack on OpenSSL Constant Time RSA.” In: JCEN
(2017).

[331] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo
Kim. “In-Kernel Control-Flow Integrity on Commodity OSes using
ARM Pointer Authentication.” In: USENIX Security Symposium.
2022.

[332] Yves Younan, Wouter Joosen, and Frank Piessens. “Runtime Coun-
termeasures for Code Injection Attacks against C and C++ Pro-
grams.” In: ACM Computing Surveys (2012).

[333] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. “Hardware-assisted
fine-grained code-reuse attack detection.” In: RAID. 2015.

78 Chapter 4. Conclusion

[334] Andreas Zankl, Hermann Seuschek, Gorka Irazoqui, and Berk Gul-
mezoglu. “Side-channel attacks in the Internet of Things: threats
and challenges.” In: Research Anthology on Artificial Intelligence
Applications in Security. 2021.

[335] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen,
and Dawn Song. “VTint: Protecting Virtual Function Tables’ In-
tegrity.” In: NDSS. 2015.

[336] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. “Practical control
flow integrity and randomization for binary executables.” In: S&P.
2013.

[337] Mingwei Zhang and R. Sekar. “Control Flow Integrity for COTS
Binaries.” In: USENIX Security Symposium. 2013.

[338] Tianning Zhang, Miao Cai, Diming Zhang, and Hao Huang. “Se-
BROP: blind ROP attacks without returns.” In: Frontiers of Com-
puter Science (2022).

[339] Weijuan Zhang, Xiaoqi Jia, Chang Wang, Shengzhi Zhang, Qingjia
Huang, Mingsheng Wang, and Peng Liu. “A Comprehensive Study
of Co-residence Threat in Multi-tenant Public PaaS Clouds.” In:
Information and Communications Security. 2016.

[340] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-Tenant Side-Channel Attacks in PaaS Clouds.” In:
CCS. 2014.

[341] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-VM Side Channels and Their Use to Extract Private
Keys.” In: CCS. 2012.

[342] Tianhao Zheng, Haishan Zhu, and Mattan Erez. “SIPT: Specula-
tively Indexed, Physically Tagged Caches.” In: HPCA. 2018.

Part II

Publications

79

5
A Systematic Evaluation of Transient

Execution Attacks and Defenses

Publication Data

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. “A Systematic Evaluation of Transient Execution Attacks and
Defenses.” In: USENIX Security Symposium. Extended classification tree
and PoCs at https://transient.fail/. 2019

Contributions

Main author.

81

82 Chapter 5. Systematic Evaluation of Attacks and Defenses

A Systematic Evaluation of Transient Execution
Attacks and Defenses

Claudio Canella
1
, Jo Van Bulck

2
, Michael Schwarz

1
, Moritz Lipp

1
,

Benjamin von Berg
1
, Philipp Ortner

1
, Frank Piessens

2
, Dmitry

Evtyushkin
3
, Daniel Gruss

1

1
Graz University of Technology, Austria

2
imec-DistriNet, KU Leuven,

Belgium
3

College of William and Mary, USA

Abstract

Research on transient execution attacks including Spectre and Meltdown
showed that exception or branch misprediction events might leave secret-
dependent traces in the CPU’s microarchitectural state. This observation
led to a proliferation of new Spectre and Meltdown attack variants and
even more ad-hoc defenses (e.g., microcode and software patches). Both
the industry and academia are now focusing on finding effective defenses
for known issues. However, we only have limited insight on residual attack
surface and the completeness of the proposed defenses.

In this paper, we present a systematization of transient execution
attacks. Our systematization uncovers 6 (new) transient execution at-
tacks that have been overlooked and not been investigated so far: 2 new
exploitable Meltdown effects: Meltdown-PK (Protection Key Bypass) on
Intel, and Meltdown-BND (Bounds Check Bypass) on Intel and AMD;
and 4 new Spectre mistraining strategies. We evaluate the attacks in our
classification tree through proof-of-concept implementations on 3 major
CPU vendors (Intel, AMD, ARM). Our systematization yields a more
complete picture of the attack surface and allows for a more systematic
evaluation of defenses. Through this systematic evaluation, we discover
that most defenses, including deployed ones, cannot fully mitigate all
attack variants.

1 Introduction

CPU performance over the last decades was continuously improved by
shrinking processing technology and increasing clock frequencies, but

The original publication is available at https://www.usenix.org/
conference/usenixsecurity19/presentation/canella.

https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

1. Introduction 83

physical limitations are already hindering this approach. To still increase
the performance, vendors shifted the focus to increasing the number of
cores and optimizing the instruction pipeline. Modern CPU pipelines
are massively parallelized allowing hardware logic in prior pipeline stages
to perform operations for subsequent instructions ahead of time or even
out-of-order. Intuitively, pipelines may stall when operations have a depen-
dency on a previous instruction which has not been executed (and retired)
yet. Hence, to keep the pipeline full at all times, it is essential to predict
the control flow, data dependencies, and possibly even the actual data.
Modern CPUs, therefore, rely on intricate microarchitectural optimizations
to predict and sometimes even re-order the instruction stream. Crucially,
however, as these predictions may turn out to be wrong, pipeline flushes
may be necessary, and instruction results should always be committed
according to the intended in-order instruction stream. Pipeline flushes
may occur even without prediction mechanisms, as on modern CPUs
virtually any instruction can raise a fault (e.g., page fault or general pro-
tection fault), requiring a roll-back of all operations following the faulting
instruction. With prediction mechanisms, there are more situations when
partial pipeline flushes are necessary, namely on every misprediction. The
pipeline flush discards any architectural effects of pending instructions,
ensuring functional correctness. Hence, the instructions are executed
transiently (first they are, and then they vanish), i.e., we call this transient
execution [50, 56, 86].

While the architectural effects and results of transient instructions
are discarded, microarchitectural side effects remain beyond the transient
execution. This is the foundation of Spectre [50], Meltdown [56], and
Foreshadow [86]. These attacks exploit transient execution to encode
secrets through microarchitectural side effects (e.g., cache state) that can
later be recovered by an attacker at the architectural level. The field of
transient execution attacks emerged suddenly and proliferated, leading to a
situation where people are not aware of all variants and their implications.
This is apparent from the confusing naming scheme that already led to
an arguably wrong classification of at least one attack [48]. Even more
important, this confusion leads to misconceptions and wrong assumptions
for defenses. Many defenses focus exclusively on hindering exploitation
of a specific covert channel, instead of addressing the microarchitectural
root cause of the leakage [45, 47, 50, 91]. Other defenses rely on recent
CPU features that have not yet been evaluated from a transient security
perspective [84]. We also debunk implicit assumptions including that
AMD or the latest Intel CPUs are completely immune to Meltdown-type

84 Chapter 5. Systematic Evaluation of Attacks and Defenses

effects, or that serializing instructions mitigate Spectre Variant 1 on any
CPU.

In this paper, we present a systematization of transient execution
attacks, i.e., Spectre, Meltdown, Foreshadow, and related attacks. Using
our decision tree, transient execution attacks are accurately classified
through an unambiguous naming scheme (cf. Figure 5.1). The hierarchical
and extensible nature of our taxonomy allows to easily identify residual
attack surface, leading to 6 previously overlooked transient execution
attacks (Spectre and Meltdown variants) first described in this work. Two
of the attacks are Meltdown-BND, exploiting a Meltdown-type effect
on the x86 bound instruction on Intel and AMD, and Meltdown-PK,
exploiting a Meltdown-type effect on memory protection keys on Intel.
The other 4 attacks are previously overlooked mistraining strategies for
Spectre-PHT and Spectre-BTB attacks. We demonstrate the attacks in
our classification tree through practical proofs-of-concept with vulnerable
code patterns evaluated on CPUs of Intel, ARM, and AMD.

1

Next, we provide a classification of gadgets and their prevalence in
real-world software based on an anaylsis of the Linux kernel. We also give
a short overview on current tools for automatic gadget detection.

We then provide a systematization of the state-of-the-art defenses.
Based on this, we systematically evaluate defenses with practical experi-
ments and theoretical arguments to show which work and which do not
or cannot suffice. This systematic evaluation revealed that we can still
mount transient execution attacks that are supposed to be mitigated by
rolled out patches. Finally, we discuss how defenses can be designed to
mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We systematize Spectre- and Meltdown-type attacks, advancing attack

surface understanding, highlighting misclassifications, and revealing
new attacks.

2. We provide a clear distinction between Meltdown/Spectre, required for
designing effective countermeasures.

3. We provide a classification of gadgets and discuss their prevalence in
real-world software.

4. We categorize defenses and show that most, including deployed ones,
cannot fully mitigate all attack variants.

5. We describe new branch mistraining strategies, highlighting the diffi-
culty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.

1
https://github.com/IAIK/transientfail

https://github.com/IAIK/transientfail

2. Transient Execution 85

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [29]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [48, 50]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [13, 50]

BTB-CA-OP [50]

BTB-SA-IP ⭑

BTB-SA-OP [13]Cross-address-space

Same-address-space RSB-CA-IP [52, 59]

RSB-CA-OP [52]

RSB-SA-IP [59]

RSB-SA-OP [52, 59]

Meltdown-NM [78]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [8, 31]

Meltdown-US [56]

Meltdown-P [86, 90]

Meltdown-RW [48]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [40]

Meltdown-BND ⭑

prediction

fault

Figure 5.1: Transient execution attack classification tree with demonstrated
attacks (red, bold), negative results (green, dashed), some first

explored in this work (⭑ / ⭐).
1

Experimental Setup. Unless noted otherwise, the experimental results
reported were performed on recent Intel Skylake i5-6200U, Coffee Lake
i7-8700K, and Whiskey Lake i7-8565U CPUs. Our AMD test machines
were a Ryzen 1950X and a Ryzen Threadripper 1920X. For experiments
on ARM, an NVIDIA Jetson TX1 has been used.
Outline. Section 2 provides background. We systematize Spectre in
Section 3 and Meltdown in Section 4. We analyze and classify gadgets in
Section 5 and defenses in Section 6. We discuss future work and conclude
in Section 7.

2 Transient Execution

Instruction Set Architecture and Microarchitecture. The instruc-
tion set architecture (ISA) provides an interface between hardware and
software. It defines the instructions that a processor supports, the avail-
able registers, the addressing mode, and describes the execution model.
Examples of different ISAs are x86 and ARMv8. The microarchitecture
then describes how the ISA is implemented in a processor in the form of
pipeline depth, interconnection of elements, execution units, cache, branch

1
An up-to-date version of the tree is available at http://transient.fail/

http://transient.fail/

86 Chapter 5. Systematic Evaluation of Attacks and Defenses

prediction. The ISA and the microarchitecture are both stateful. In the
ISA, this state includes, for instance, data in registers or main memory
after a successful computation. Therefore, the architectural state can
be observed by the developer. The microarchitectural state includes, for
instance, entries in the cache and the translation lookaside buffer (TLB),
or the usage of the execution units. Those microarchitectural elements
are transparent to the programmer and can not be observed directly, only
indirectly.

Out-of-Order Execution. On modern CPUs, individual instructions of
a complex instruction set are first decoded and split-up into simpler micro-
operations (µOPs) that are then processed. This design decision allows
for superscalar optimizations and to extend or modify the implementation
of specific instructions through so-called microcode updates. Furthermore,
to increase performance, CPU’s usually implement a so-called out-of-
order design. This allows the CPU to execute µOPs not only in the
sequential order provided by the instruction stream but to dispatch them
in parallel, utilizing the CPU’s execution units as much as possible and,
thus, improving the overall performance. If the required operands of a
µOP are available, and its corresponding execution unit is not busy, the
CPU starts its execution even if µOPs earlier in the instruction stream
have not finished yet. As immediate results are only made visible at the
architectural level when all previous µOPs have finished, CPUs typically
keep track of the status of µOPs in a so-called Reorder Buffer (ROB). The
CPU takes care to retire µOPs in-order, deciding to either discard their
results or commit them to the architectural state. For instance, exceptions
and external interrupt requests are handled during retirement by flushing
any outstanding µOP results from the ROB. Therefore, the CPU may
have executed so-called transient instructions [56], whose results are never
committed to the architectural state.

Speculative Execution. Software is mostly not linear but contains
(conditional) branches or data dependencies between instructions. In
theory, the CPU would have to stall until a branch or dependencies
are resolved before it can continue the execution. As stalling decreases
performance significantly, CPUs deploy various mechanisms to predict
the outcome of a branch or a data dependency. Thus, CPUs continue
executing along the predicted path, buffering the results in the ROB
until the correctness of the prediction is verified as its dependencies
are resolved. In the case of a correct prediction, the CPU can commit
the pre-computed results from the reorder buffer, increasing the overall
performance. However, if the prediction was incorrect, the CPU needs to

2. Transient Execution 87

preface1

reconstruct5

trigger instruction 2

transient instructions 3

fixup4

time
architectural architecturaltransient execution

Figure 5.2: High-level overview of a transient execution attack in 5 phases: (1)
prepare microarchitecture, (2) execute a trigger instruction, (3)
transient instructions encode unauthorized data through a microar-
chitectural covert channel, (4) CPU retires trigger instruction and
flushes transient instructions, (5) reconstruct secret from microar-
chitectural state.

perform a roll-back to the last correct state by squashing all pre-computed
transient instruction results from the ROB.

Cache Covert Channels. Modern CPUs use caches to hide memory
latency. However, these latency differences can be exploited in side-
channels and covert channels [24, 51, 60, 67, 92]. In particular, Flush+
Reload allows observations across cores at cache-line granularity, enabling
attacks, e.g., on cryptographic algorithms [26, 43, 92], user input [24,
55, 72], and kernel addressing information [23]. For Flush+Reload, the
attacker continuously flushes a shared memory address using the clflush

instruction and afterward reloads the data. If the victim used the cache
line, accessing it will be fast; otherwise, it will be slow.

Covert channels are a special use case of side-channel attacks, where
the attacker controls both the sender and the receiver. This allows an
attacker to bypass many restrictions that exist at the architectural level
to leak information.

Transient Execution Attacks. Transient instructions reflect unautho-
rized computations out of the program’s intended code and/or data paths.
For functional correctness, it is crucial that their results are never commit-
ted to the architectural state. However, transient instructions may still
leave traces in the CPU’s microarchitectural state, which can subsequently
be exploited to partially recover unauthorized results [50, 56, 86]. This
observation has led to a variety of transient execution attacks, which from
a high-level always follow the same abstract flow, as shown in Figure 5.2.
The attacker first brings the microarchitecture into the desired state, e.g.,

88 Chapter 5. Systematic Evaluation of Attacks and Defenses

by flushing and/or populating internal branch predictors or data caches.
Next is the execution of a so-called trigger instruction. This can be any
instruction that causes subsequent operations to be eventually squashed,
e.g., due to an exception or a mispredicted branch or data dependency.
Before completion of the trigger instruction, the CPU proceeds with the
execution of a transient instruction sequence. The attacker abuses the
transient instructions to act as the sending end of a microarchitectural
covert channel, e.g., by loading a secret-dependent memory location into
the CPU cache. Ultimately, at the retirement of the trigger instruction,
the CPU discovers the exception/misprediction and flushes the pipeline to
discard any architectural effects of the transient instructions. However, in
the final phase of the attack, unauthorized transient computation results
are recovered at the receiving end of the covert channel, e.g., by timing
memory accesses to deduce the secret-dependent loads from the transient
instructions.

High-Level Classification: Spectre vs. Meltdown. Transient ex-
ecution attacks have in common that they abuse transient instructions
(which are never architecturally committed) to encode unauthorized data
in the microarchitectural state. With different instantiations of the ab-
stract phases in Figure 5.2, a wide spectrum of transient execution attack
variants emerges. We deliberately based our classification on the root
cause of the transient computation (phases 1, 2), abstracting away from
the specific covert channel being used to transmit the unauthorized data
(phases 3, 5). This leads to a first important split in our classification tree
(cf. Figure 5.1). Attacks of the first type, dubbed Spectre [50], exploit
transient execution following control or data flow misprediction. Attacks
of the second type, dubbed Meltdown [56], exploit transient execution
following a faulting instruction.

Importantly, Spectre and Meltdown exploit fundamentally different
CPU properties and hence require orthogonal defenses. Where the former
relies on dedicated control or data flow prediction machinery, the latter
merely exploits that data from a faulting instruction is forwarded to
instructions ahead in the pipeline. Note that, while Meltdown-type attacks
so far exploit out-of-order execution, even elementary in-order pipelines
may allow for similar effects [85]. Essentially, the different root cause
of the trigger instruction (Spectre-type misprediction vs. Meltdown-type
fault) determines the nature of the subsequent unauthorized transient
computations and hence the scope of the attack.

That is, in the case of Spectre, transient instructions can only compute
on data which the application is also allowed to access architecturally.

3. Spectre-type Attacks 89

Spectre thus transiently bypasses software-defined security policies (e.g.,
bounds checking, function call/return abstractions, memory stores) to
leak secrets out of the program’s intended code/data paths. Hence, much
like in a “confused deputy” scenario, successful Spectre attacks come
down to steering a victim into transiently computing on memory locations
the victim is authorized to access but the attacker not. In practice, this
implies that one or more phases of the transient execution attack flow in
Figure 5.2 should be realized through so-called code gadgets executing
within the victim application. We propose a novel taxonomy of gadgets
based on these phases in Section 5.

For Meltdown-type attacks, on the other hand, transient execution
allows to completely “melt down” architectural isolation barriers by com-
puting on unauthorized results of faulting instructions. Meltdown thus
transiently bypasses hardware-enforced security policies to leak data that
should always remain architecturally inaccessible for the application.
Where Spectre-type leakage remains largely an unintended side-effect
of important speculative performance optimizations, Meltdown reflects
a failure of the CPU to respect hardware-level protection boundaries
for transient instructions. That is, the mere continuation of the tran-
sient execution after a fault itself is required, but not sufficient for a
successful Meltdown attack. As further explored in Section 6, this has
profound consequences for defenses. Overall, mitigating Spectre requires
careful hardware-software co-design, whereas merely replacing the data of
a faulting instruction with a dummy value suffices to block Meltdown-type
leakage in silicon, e.g., as it is done in AMD processors, or with the Rogue
Data Cache Load resistance (RDCL NO) feature advertised in recent Intel
CPUs from Whiskey Lake onwards [40].

3 Spectre-type Attacks

In this section, we provide an overview of Spectre-type attacks (cf. Fig-
ure 5.1). Given the versatility of Spectre variants in a variety of adversary
models, we propose a novel two-level taxonomy based on the preparatory
phases of the abstract transient execution attack flow in Figure 5.2. First,
we distinguish the different microarchitectural buffers that can trigger a
prediction (phase 2), and second, the mistraining strategies that can be
used to steer the prediction (phase 1).

Systematization of Spectre Variants. To predict the outcome of
various types of branches and data dependencies, modern CPUs accumu-
late an extensive microarchitectural state across various internal buffers

90 Chapter 5. Systematic Evaluation of Attacks and Defenses

Table 5.1: Spectre-type attacks and the microarchitectural element they exploit
(), partially target (), or not affect ().

Attack
Element

B
T

B

B
H

B

P
H

T

R
S

B

S
T

L

Spectre-PHT (Variant 1) [50]
Spectre-PHT (Variant 1.1) [48]

Spectre-BTB (Variant 2) [50]
Spectre-RSB (ret2spec) [52, 59]

Spectre-STL (Variant 4) [29]

Glossary: Branch Target Buffer (BTB), Branch History Buffer (BHB), Pattern History

Table (PHT), Return Stack Buffer (RSB), Store To Load (STL).

and components [19]. Table 5.1 overviews Spectre-type attacks and the
corresponding microarchitectural elements they exploit. As the first level
of our classification tree, we categorize Spectre attacks based on the mi-
croarchitectural root cause that triggers the misprediction leading to the
transient execution:

• Spectre-PHT [48, 50] exploits the Pattern History Table (PHT) that
predicts the outcome of conditional branches.

• Spectre-BTB [50] exploits the Branch Target Buffer (BTB) for
predicting branch destination addresses.

• Spectre-RSB [52, 59] primarily exploits the Return Stack Buffer
(RSB) for predicting return addresses.

• Spectre-STL [29] exploits memory disambiguation for predicting
Store To Load (STL) data dependencies.

Note that NetSpectre [74], SGXSpectre [63], and SGXPectre [13] focus
on applying one of the above Spectre variants in a specific exploitation
scenario. Hence, we do not consider them separate variants in our classifi-
cation.

Systematization of Mistraining Strategies. We now propose a
second-level classification scheme for Spectre variants that abuse history-
based branch prediction (i.e., all of the above except Spectre-STL). These
Spectre variants first go through a preparatory phase (cf. Figure 5.2)
where the microarchitectural branch predictor state is “poisoned” to cause
intentional misspeculation of a particular victim branch. Since branch
prediction buffers in modern CPUs [19, 50] are commonly indexed based
on the virtual address of the branch instruction, mistraining can happen

3. Spectre-type Attacks 91

in-place/
same-address-
space

out-of-place/
same-address-
space

Victim

Victim branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

in-place/
cross-address-
space

out-of-place/
cross-address-
space

Attacker

Shadow branch

Congruent
branch

A
d

d
re

ss
co

ll
is

io
n

Shared Branch Prediction State

Figure 5.3: A branch can be mistrained either by the victim process (same-
address-space) or by an attacker-controlled process (cross-address-
space). Mistraining can be achieved either using the vulnerable
branch itself (in-place) or a branch at a congruent virtual address
(out-of-place).

either within the same address space or from a different attacker-controlled
process. Furthermore, as illustrated in Figure 5.3, when only a subset of the
virtual address is used in the prediction, mistraining can be achieved using
a branch instruction at a congruent virtual address. We thus enhance the
field of Spectre-type branch poisoning attacks with 4 distinct mistraining
strategies:

1. Executing the victim branch in the victim process (same-address-
space in-place).

2. Executing a congruent branch in the victim process (same-address-
space out-of-place).

3. Executing a shadow branch in a different process (cross-address-space
in-place).

4. Executing a congruent branch in a different process (cross-address-
space out-of-place).

In current literature [6, 13, 48, 50], several of the above branch poisoning
strategies have been overlooked for different Spectre variants. We sum-
marize the results of an assessment of vulnerabilities under mistraining
strategies in Table 5.2. Our systematization thus reveals clear blind spots
that allow an attacker to mistrain branch predictors in previously unknown
ways. As explained further, depending on the adversary’s capabilities (e.g.,
in-process, sandboxed, remote, enclave, etc.) these previously unknown
mistraining strategies may lead to new attacks and/or bypass existing
defenses.

92 Chapter 5. Systematic Evaluation of Attacks and Defenses

3.1 Spectre-PHT (Input Validation Bypass)

Microarchitectural Element. Kocher et al. [50] first introduced
Spectre Variant 1, an attack that poisons the Pattern History Table
(PHT) to mispredict the direction (taken or not-taken) of conditional
branches. Depending on the underlying microarchitecture, the PHT is
accessed based on a combination of virtual address bits of the branch
instruction plus a hidden Branch History Buffer (BHB) that accumulates
global behavior for the last N branches on the same physical core [18, 19]
Reading Out-of-Bounds. Conditional branches are commonly used
by programmers and/or compilers to maintain memory safety invariants
at runtime. For example, consider the following code snippet for bounds
checking [50]:

if (x < len(array1)) { y = array2[array1[x] * 4096]; }

At the architectural level, this program clearly ensures that the index
variable x always lies within the bounds of the fixed-length buffer array1.
However, after repeatedly supplying valid values of x, the PHT will
reliably predict that this branch evaluates to true. When the adversary
now supplies an invalid index x, the CPU continues along a mispredicted
path and transiently performs an out-of-bounds memory access. The above
code snippet features an explicit example of a “leak gadget” that may act
as a microarchitectural covert channel: depending on the out-of-bounds
value being read, the transient instructions load another memory page
belonging to array2 into the cache.
Writing Out-of-Bounds. Kiriansky and Waldspurger [48] showed that
transient writes are also possible by following the same principle. Consider
the following code line:

if (x < len(array)) { array[x] = value; }

After mistraining the PHT component, attackers controlling the untrusted
index x can transiently write to arbitrary out-of-bounds addresses. This
creates a transient buffer overflow, allowing the attacker to bypass both
type and memory safety. Ultimately, when repurposing traditional tech-
niques from return-oriented programming [75] attacks, adversaries may
even gain arbitrary code execution in the transient domain by overwriting
return addresses or code pointers.
Overlooked Mistraining Strategies. Spectre-PHT attacks so far [48,
50, 63] rely on a same-address-space in-place branch poisoning strategy.
However, our results (cf. Table 5.2) reveal that the Intel, ARM, and AMD
CPUs we tested are vulnerable to all four PHT mistraining strategies.
In this, we are the first to successfully demonstrate Spectre-PHT-style
branch misprediction attacks without prior execution of the victim branch.

3. Spectre-type Attacks 93

Table 5.2: Spectre-type attacks performed in-place, out-of-place, same-address-
space (i.e., intra-process), or cross-address-space (i.e., cross-process).

Method
Attack

Spect
re-

PHT

Spect
re-

BTB

Spect
re-

RSB

Spect
re-

STL

Intel
intra-process

in-place [48, 50] [59] [29]
out-of-place [13] [52, 59]

cross-process
in-place [13, 50] [52, 59]
out-of-place [50] [52]

ARM
intra-process

in-place [48, 50] [6] [6]
out-of-place [6]

cross-process
in-place [6, 50]
out-of-place

AMD
intra-process

in-place [50] [29]
out-of-place

cross-process
in-place [50]
out-of-place

Symbols indicate whether an attack is possible and known (), not possible and known

(), possible and previously unknown or not shown (), or tested and did not work and

previously unknown or not shown (). All tests performed with no defenses enabled.

This is an important contribution as it may open up previously unknown
attack avenues for restricted adversaries.

Cross-address-space PHT poisoning may, for instance, enable advanced
attacks against a privileged daemon process that does not directly accept
user input. Likewise, for Intel SGX technology, remote attestation schemes
have been developed [76] to enforce that a victim enclave can only be run
exactly once. This effectively rules out current state-of-the-art SGXSpec-
tre [63] attacks that repeatedly execute the victim enclave to mistrain the
PHT branch predictor. Our novel out-of-place PHT poisoning strategy,
on the other hand, allows us to perform the training phase entirely outside
the enclave on the same physical core by repeatedly executing a congruent
branch in the untrusted enclave host process (cf. Figure 5.3).

3.2 Spectre-BTB (Branch Target Injection)

Microarchitectural Element. In Spectre Variant 2 [50], the attacker
poisons the Branch Target Buffer (BTB) to steer the transient execution

94 Chapter 5. Systematic Evaluation of Attacks and Defenses

to a mispredicted branch target. For direct branches, the CPU indexes the
BTB using a subset of the virtual address bits of the branch instruction to
yield the predicted jump target. For indirect branches, CPUs use different
mechanisms [28], which may take into account global branching history
accumulated in the BHB when indexing the BTB. We refer to both types
as Spectre-BTB.

Hijacking Control Flow. Contrary to Spectre-PHT, where tran-
sient instructions execute along a restricted mispredicted path, Spectre-
BTB allows redirecting transient control flow to an arbitrary destination.
Adopting established techniques from return-oriented programming (ROP)
attacks [75], but abusing BTB poisoning instead of application-level vul-
nerabilities, selected code “gadgets” found in the victim address space
may be chained together to construct arbitrary transient instruction se-
quences. Hence, where the success of Spectre-PHT critically relies on
unintended leakage along the mispredicted code path, ROP-style gadget
abuse in Spectre-BTB allows to more directly construct covert channels
that expose secrets from the transient domain (cf. Figure 5.2). We discuss
gadget types in more detail in Section 5.

Overlooked Mistraining Strategies. Spectre-BTB was initially
demonstrated on Intel, AMD, and ARM CPUs using a cross-address-
space in-place mistraining strategy [50]. With SGXPectre [13], Chen et al.
extracted secrets from Intel SGX enclaves using either a cross-address-
space in-place or same-address-space out-of-place BTB poisoning strategy.
We experimentally reproduced these mistraining strategies through a sys-
tematic evaluation presented in Table 5.2. On AMD and ARM, we could
not demonstrate out-of-place BTB poisoning. Possibly, these CPUs use
an unknown (sub)set of virtual address bits or a function of bits which
we were not able to reverse engineer. We encourage others to investigate
whether a different (sub)set of virtual address bits is required to enable
the attack.

To the best of our knowledge, we are the first to recognize that
Spectre-BTB mistraining can also proceed by repeatedly executing the
vulnerable indirect branch with valid inputs. Much like Spectre-PHT,
such same-address-space in-place BTB (Spectre-BTB-SA-IP) poisoning
abuses the victim’s own execution to mistrain the underlying branch
target predictor. Hence, as an important contribution to understanding
attack surface and defenses, in-place mistraining within the victim domain
may allow bypassing widely deployed mitigations [4, 40] that flush and/or
partition the BTB before entering the victim. Since the branch destination
address is now determined by the victim code and not under the direct

3. Spectre-type Attacks 95

control of the attacker, however, Spectre-BTB-SA-IP cannot offer the
full power of arbitrary transient control flow redirection. Yet, in higher-
level languages like C++ that commonly rely on indirect branches to
implement polymorph abstractions, Spectre-BTB-SA-IP may lead to subtle
“speculative type confusion” vulnerabilities. For example, a victim that
repeatedly executes a virtual function call with an object of TypeA may
inadvertently mistrain the branch target predictor to cause misspeculation
when finally executing the virtual function call with an object of another
TypeB.

3.3 Spectre-RSB (Return Address Injection)

Microarchitectural Element. Maisuradze and Rossow [59] and Ko-
ruyeh et al. [52] introduced a Spectre variant that exploits the Return
Stack Buffer (RSB). The RSB is a small per-core microarchitectural buffer
that stores the virtual addresses following the N most recent call instruc-
tions. When encountering a ret instruction, the CPU pops the topmost
element from the RSB to predict the return flow.

Hijacking Return Flow. Misspeculation arises whenever the RSB lay-
out diverges from the actual return addresses on the software stack. Such
disparity for instance naturally occurs when restoring kernel/enclave/user
stack pointers upon protection domain switches. Furthermore, same-
address-space adversaries may explicitly overwrite return addresses on
the software stack, or transiently execute call instructions which update
the RSB without committing architectural effects [52]. This may allow
untrusted code executing in a sandbox to transiently divert return control
flow to interesting code gadgets outside of the sandboxed environment.

Due to the fixed-size nature of the RSB, a special case of misspeculation
occurs for deeply nested function calls [52, 59]. Since the RSB can only
store return addresses for the N most recent calls, an underfill occurs when
the software stack is unrolled. In this case, the RSB can no longer provide
accurate predictions. Starting from Skylake, Intel CPUs use the BTB as
a fallback [19, 52], thus allowing Spectre-BTB-style attacks triggered by
ret instructions.

Overlooked Mistraining Strategies. Spectre-RSB has been demon-
strated with all four mistraining strategies, but only on Intel [52, 59]. Our
experimental results presented in Table 5.2 generalize these strategies to
AMD CPUs. Furthermore, in line with ARM’s own analysis [6], we suc-
cessfully poisoned RSB entries within the same-address-space but did not
observe any cross-address-space leakage on ARM CPUs. We expect this

96 Chapter 5. Systematic Evaluation of Attacks and Defenses

Table 5.3: Demonstrated Meltdown-type (MD) attacks.

Attack #
G
P
#

N
M
#

B
R
#

PF
U
/S

P R
/W

R
SV

D

X
D

PK

MD-GP (Variant 3a) [8]
MD-NM (Lazy FP) [78]
MD-BR
MD-US (Meltdown) [56]
MD-P (Foreshadow) [86, 90]
MD-RW (Variant 1.2) [48]
MD-PK

Symbols (or) indicate whether an exception type (left) or permission bit (right) is

exploited. Systematic names are derived from what is exploited.

may be a limitation of our current proof-of-concept code and encourage
others to investigate this further.

3.4 Spectre-STL (Speculative Store Bypass)

Microarchitectural Element. Speculation in modern CPUs is not
restricted to control flow but also includes predicting dependencies in the
data flow. A common type of Store To Load (STL) dependencies require
that a memory load shall not be executed before all preceding stores that
write to the same location have completed. However, even before the
addresses of all prior stores in the pipeline are known, the CPUs’ memory
disambiguator [3, 34, 44] may predict which loads can already be executed
speculatively.

When the disambiguator predicts that a load does not have a depen-
dency on a prior store, the load reads data from the L1 data cache. When
the addresses of all prior stores are known, the prediction is verified. If any
overlap is found, the load and all following instructions are re-executed.

Reading Stale Values. Horn [29] showed how mispredictions by the
memory disambiguator could be abused to speculatively bypass store
instructions. Like previous attacks, Spectre-STL adversaries rely on an
appropriate transient instruction sequence to leak unsanitized stale values
via a microarchitectural covert channel. Furthermore, operating on stale
pointer values may speculatively break type and memory safety guarantees
in the transient execution domain [29].

4. Meltdown-type Attacks 97

Table 5.4: Secrets recoverable via Meltdown-type attacks and whether they
cross the current privilege level (CPL).

Attack
Leaks

M
em

or
y

C
a
ch

e

R
eg

is
te

r

C
ro

ss
-C

P
L

Meltdown-US (Meltdown) [56] 3

Meltdown-P (Foreshadow-NG) [90] 3

Meltdown-P (Foreshadow-SGX) [86] 3

Meltdown-GP (Variant 3a) [8] 3

Meltdown-NM (Lazy FP) [78] 3

Meltdown-RW (Variant 1.2) [48] 8

Meltdown-PK 8

Meltdown-BR 8

Symbols indicate whether an attack crosses a processor privilege level (3) or not (8),

whether it can leak secrets from a buffer (), only with additional steps (), or not at

all (). Respectively (vs.) if first shown in this work.

4 Meltdown-type Attacks

This section overviews Meltdown-type attacks, and presents a classifi-
cation scheme that led to the discovery of two previously overlooked
Meltdown variants (cf. Figure 5.1). Importantly, where Spectre-type at-
tacks exploit (branch) misprediction events to trigger transient execution,
Meltdown-type attacks rely on transient instructions following a CPU
exception. Essentially, Meltdown exploits that exceptions are only raised
(i.e., become architecturally visible) upon the retirement of the faulting
instruction. In some microarchitectures, this property allows transient
instructions ahead in the pipeline to compute on unauthorized results
of the instruction that is about to suffer a fault. The CPU’s in-order
instruction retirement mechanism takes care to discard any architectural
effects of such computations, but as with the Spectre-type attacks above,
secrets may leak through microarchitectural covert channels.

Systematization of Meltdown Variants. We introduce a classification
for Meltdown-type attacks in two dimensions. In the first level, we
categorize attacks based on the exception that causes transient execution.
Following Intel’s [35] classification of exceptions as faults, traps, or aborts,
we observed that Meltdown-type attacks so far have exploited faults, but

98 Chapter 5. Systematic Evaluation of Attacks and Defenses

not traps or aborts. The CPU generates faults if a correctable error has
occurred, i.e., they allow the program to continue after it has been resolved.
Traps are reported immediately after the execution of the instruction, i.e.,
when the instruction retires and becomes architecturally visible. Aborts
report some unrecoverable error and do not allow a restart of the task
that caused the abort.

In the second level, for page faults (#PF), we further categorize based
on page-table entry protection bits (cf. Table 5.3). We also categorize
attacks based on which storage locations can be reached, and whether it
crosses a privilege boundary (cf. Table 5.4). Through this systematization,
we discovered several previously unknown Meltdown variants that exploit
different exception types as well as page-table protection bits, including
two exploitable ones. Our systematic analysis furthermore resulted in
the first demonstration of exploitable Meltdown-type delayed exception
handling effects on AMD CPUs.

4.1 Meltdown-US (Supervisor-only Bypass)

Modern CPUs commonly feature a “user/supervisor” page-table attribute
to denote a virtual memory page as belonging to the OS kernel. The
original Meltdown attack [56] reads kernel memory from user space on
CPUs that do not transiently enforce the user/supervisor flag. In the trig-
ger phase (cf. Figure 5.2) an unauthorized kernel address is dereferenced,
which eventually causes a page fault. Before the fault becomes archi-
tecturally visible, however, the attacker executes a transient instruction
sequence that for instance accesses a cache line based on the privileged
data read by the trigger instruction. In the final phase, after the exception
has been raised, the privileged data is reconstructed at the receiving end
of the covert channel (e.g., Flush+Reload).

The attacks bandwidth can be improved by suppressing exceptions
through transaction memory CPU features such as Intel TSX [35], excep-
tion handling [56], or hiding it in another transient execution [28, 56]. By
iterating byte-by-byte over the kernel space and suppressing or handling
exceptions, an attacker can dump the entire kernel. This includes the
entire physical memory if the operating system has a direct physical map
in the kernel. While extraction rates are significantly higher when the
kernel data resides in the CPU cache, Meltdown has even been shown to
successfully extract uncached data from memory [56].

4. Meltdown-type Attacks 99

4.2 Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [86] presented Foreshadow, a Meltdown-
type attack targeting Intel SGX technology [32]. Unauthorized accesses
to enclave memory usually do not raise a #PF exception but are instead
silently replaced with abort page dummy values (cf. Section 6.2). In
the absence of a fault, plain Meltdown cannot be mounted against SGX
enclaves. To overcome this limitation, a Foreshadow attacker clears the
“present” bit in the page-table entry mapping the enclave secret, ensuring
that a #PF will be raised for subsequent accesses. Analogous to Meltdown-
US, the adversary now proceeds with a transient instruction sequence to
leak the secret (e.g., through a Flush+Reload covert channel).

Intel [30] named L1 Terminal Fault (L1TF) as the root cause behind
Foreshadow. A terminal fault occurs when accessing a page-table entry
with either the present bit cleared or a “reserved” bit set. In such cases,
the CPU immediately aborts address translation. However, since the L1
data cache is indexed in parallel to address translation, the page table
entry’s physical address field (i.e., frame number) may still be passed
to the L1 cache. Any data present in L1 and tagged with that physical
address will now be forwarded to the transient execution, regardless of
access permissions.

Although Meltdown-P-type leakage is restricted to the L1 data cache,
the original Foreshadow [86] attack showed how SGX’s secure page swap-
ping mechanism might first be abused to prefetch arbitrary enclave pages
into the L1 cache, including even CPU registers stored on interrupt. This
highlights that SGX’s privileged adversary model considerably amplifies
the transient execution attack surface.

Foreshadow-NG. Foreshadow-NG [90] generalizes Foreshadow from
the attack on SGX enclaves to bypass operating system or hypervisor
isolation. The generalization builds on the observation that the physical
frame number in a page-table entry is sometimes under direct or indirect
control of an adversary. For instance, when swapping pages to disk, the
kernel is free to use all but the present bit to store metadata (e.g., the
offset on the swap partition). However, if this offset is a valid physical
address, any cached memory at that location leaks to an unprivileged
Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which allows an untrusted
virtual machine, controlling guest-physical addresses, to extract the host
machine’s entire L1 data cache (including data belonging to the hypervisor
or other virtual machines). The underlying problem is that a terminal fault
in the guest page-tables early-outs the address translation process, such

100 Chapter 5. Systematic Evaluation of Attacks and Defenses

that guest-physical addresses are erroneously passed to the L1 data cache,
without first being translated into a proper host physical address [30].

4.3 Meltdown-GP (System Register Bypass)

Meltdown-GP (named initially Variant 3a) [37] allows an attacker to
read privileged system registers. It was first discovered and published
by ARM [8] and subsequently Intel [31] determined that their CPUs are
also susceptible to the attack. Unauthorized access to privileged system
registers (e.g., via rdmsr) raises a general protection fault (#GP). Similar
to previous Meltdown-type attacks, however, the attack exploits that the
transient execution following the faulting instruction can still compute on
the unauthorized data, and leak the system register contents through a
microarchitectural covert channel (e.g., Flush+Reload).

4.4 Meltdown-NM (FPU Register Bypass)

During a context switch, the OS has to save all the registers, including
the floating point unit (FPU) and SIMD registers. These latter registers
are large and saving them would slow down context switches. Therefore,
CPUs allow for a lazy state switch, meaning that instead of saving the
registers, the FPU is simply marked as “not available”. The first FPU
instruction issued after the FPU was marked as “not available” causes
a device-not-available (#NM) exception, allowing the OS to save the FPU
state of previous execution context before marking the FPU as available
again.

Stecklina and Prescher [78] propose an attack on the above lazy state
switch mechanism. The attack consists of three steps. In the first step,
a victim performs operations loading data into the FPU registers. Then,
in the second step, the CPU switches to the attacker and marks the
FPU as “not available”. The attacker now issues an instruction that uses
the FPU, which generates an #NM fault. Before the faulting instruction
retires, however, the CPU has already transiently executed the following
instructions using data from the previous context. As such, analogous
to previous Meltdown-type attacks, a malicious transient instruction
sequence following the faulting instruction can encode the unauthorized
FPU register contents through a microarchitectural covert channel (e.g.,
Flush+Reload).

4. Meltdown-type Attacks 101

4.5 Meltdown-RW (Read-only Bypass)

Where the above attacks [8, 56, 78, 86] focussed on stealing information
across privilege levels, Kiriansky and Waldspurger [48] presented the first
Meltdown-type attack that bypasses page-table based access rights within
the current privilege level. Specifically, they showed that transient execu-
tion does not respect the “read/write” page-table attribute. The ability
to transiently overwrite read-only data within the current privilege level
can bypass software-based sandboxes which rely on hardware enforcement
of read-only memory.

Confusingly, the above Meltdown-RW attack was originally named
“Spectre Variant 1.2” [48] as the authors followed a Spectre-centric nam-
ing scheme. Our systematization revealed, however, that the transient
cause exploited above is a #PF exception. Hence, this attack is of
Meltdown-type, but not a variant of Spectre.

4.6 Meltdown-PK (Protection Key Bypass)

Intel Skylake-SP server CPUs support memory-protection keys for user
space (PKU) [33]. This feature allows processes to change the access
permissions of a page directly from user space, i.e., without requiring a
syscall/hypercall. Thus, with PKU, user-space applications can implement
efficient hardware-enforced isolation of trusted parts [27, 84].

We present a novel Meltdown-PK attack to bypass both read and write
isolation provided by PKU. Meltdown-PK works if an attacker has code
execution in the containing process, even if the attacker cannot execute
the wrpkru instruction (e.g., blacklisting). Moreover, in contrast to cross-
privilege level Meltdown attack variants, there is no software workaround.
According to Intel [36], Meltdown-PK can be mitigated using address
space isolation. Recent Meltdown-resistant Intel processors enumerating
RDCL NO plus PKU support furthermore mitigate Meltdown-PK in
silicon. With those mitigations, the memory addresses that might be
revealed by transient execution attacks can be limited.

Experimental Results. We tested Meltdown-PK on an Amazon EC2
C5 instance running Ubuntu 18.04 with PKU support. We created a
memory mapping and used PKU to remove both read and write access.
As expected, protected memory accesses produce a #PF. However, our
proof-of-concept manages to leak the data via an adversarial transient
instruction sequence with a Flush+Reload covert channel.

102 Chapter 5. Systematic Evaluation of Attacks and Defenses

4.7 Meltdown-BR (Bounds Check Bypass)

To facilitate efficient software instrumentation, x86 CPUs come with dedi-
cated hardware instructions that raise a bound-range-exceeded exception
(#BR) when encountering out-of-bound array indices. The IA-32 ISA,
for instance, defines a bound opcode for this purpose. While the bound

instruction was omitted in the subsequent x86-64 ISA, modern Intel CPUs
ship with Memory Protection eXtensions (MPX) for efficient array bounds
checking.

Our systematic evaluation revealed that Meltdown-type effects of the
#BR exception had not been thoroughly investigated yet. Specifically,
Intel’s analysis [40] only briefly mentions MPX-based bounds check bypass
as a possibility, and recent defensive work by Dong et al. [16] highlights the
need to introduce a memory lfence after MPX bounds check instructions.
They classify this as a Spectre-type attack, implying that the lfence is
needed to prevent the branch predictor from speculating on the outcome
of the bounds check. According to Oleksenko et al. [64], neither bndcl

nor bndcu exert pressure on the branch predictor, indicating that there is
no prediction happening. Based on that, we argue that the classification
as a Spectre-type attack is misleading as no prediction is involved. The
observation by Dong et al. [16] indeed does not shed light on the #BR

exception as the root cause for the MPX bounds check bypass, and they
do not consider IA32 bound protection at all. Similar to Spectre-PHT,
Meltdown-BR is a bounds check bypass, but instead of mistraining a
predictor it exploits the lazy handling of the raised #BR exception.

Experimental Results. We introduce the Meltdown-BR attack which
exploits transient execution following a #BR exception to encode out-of-
bounds secrets that are never architecturally visible. As such, Meltdown-
BR is an exception-driven alternative for Spectre-PHT. Our proofs-of-
concept demonstrate out-of-bounds leakage through a Flush+Reload
covert channel for an array index safeguarded by either IA32 bound (Intel,
AMD), or state-of-the-art MPX protection (Intel-only). For Intel, we ran
the attacks on a Skylake i5-6200U CPU with MPX support, and for AMD
we evaluated both an E2-2000 and a Ryzen Threadripper 1920X. This is
the first experiment demonstrating a Meltdown-type transient execution
attack exploiting delayed exception handling on AMD CPUs [4, 56].

4.8 Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for other, not yet
tested exceptions. In our experiments, we consistently found no traces

4. Meltdown-type Attacks 103

Table 5.5: CPU vendors vulnerable to Meltdown (MD).

Vendor
Attack

M
D-U

S
[56

]

M
D-P

[86
, 90

]

M
D-G

P
[8,

31
]

M
D-N

M
[78

]

M
D-R

W
[48

]

M
D-P

K

M
D-B

R

M
D-D

E

M
D-A

C

M
D-U

D

M
D-S

S

M
D-X

D

M
D-S

M

Intel
ARM
AMD

Symbols indicate whether at least one CPU model is vulnerable (filled) vs. no CPU is
known to be vulnerable (empty). Glossary: reproduced (vs.), first shown in this
paper (vs.), not applicable (). All tests performed without defenses enabled.

of transient execution beyond traps or aborts, which leads us to the
hypothesis that Meltdown is only possible with faults (as they can occur
at any moment during instruction execution). Still, the possibility remains
that our experiments failed and that they are possible. Table 5.5 and
Figure 5.1 summarize experimental results for fault types tested on Intel,
ARM, and AMD.

Division Errors. For the divide-by-zero experiment, we leveraged the
signed division instruction (idiv on x86 and sdiv on ARM). On the
ARMs we tested, there is no exception, but the division yields merely
zero. On x86, the division raises a divide-by-zero exception (#DE). Both
on the AMD and Intel we tested, the CPU continues with the transient
execution after the exception. In both cases, the result register is set to
‘0’, which is the same result as on the tested ARM. Thus, according to our
experiments Meltdown-DE is not possible, as no real values are leaked.

Supervisor Access. Although supervisor mode access prevention
(SMAP) raises a page fault (#PF) when accessing user-space memory from
the kernel, it seems to be free of any Meltdown effect in our experiments.
Thus, we were not able to leak any data using Meltdown-SM in our
experiments.

Alignment Faults. Upon detecting an unaligned memory operand, the
CPU may generate an alignment check exception (#AC). In our tests, the
results of unaligned memory accesses never reach the transient execution.
We suspect that this is because #AC is generated early-on, even before
the operand’s virtual address is translated to a physical one. Hence, our
experiments with Meltdown-AC were unsuccessful in showing any leakage.

104 Chapter 5. Systematic Evaluation of Attacks and Defenses

Segmentation Faults. We consistently found that out-of-limit segment
accesses never reach transient execution in our experiments. We suspect
that, due to the simplistic IA32 segmentation design, segment limits are
validated early-on, and immediately raise a #GP or #SS (stack-segment
fault) exception, without sending the offending instruction to the ROB.
Therefore, we observed no leakage in our experiments with Meltdown-SS.
Instruction Fetch. To yield a complete picture, we investigated
Meltdown-type effects during the instruction fetch and decode phases. On
our test systems, we did not succeed in transiently executing instructions
residing in non-executable memory (i.e., Meltdown-XD), or following
an invalid opcode (#UD) exception (i.e., Meltdown-UD). We suspect that
exceptions during instruction fetch or decode are immediately handled
by the CPU, without first buffering the offending instruction in the ROB.
Moreover, as invalid opcodes have an undefined length, the CPU does
not even know where the next instruction starts. Hence, we suspect that
invalid opcodes only leak if the microarchitectural effect is already an
effect caused by the invalid opcode itself, not by subsequent transient
instructions.

5 Gadget Analysis and Classification

We deliberately oriented our attack tree (cf. Figure 5.1) on the microar-
chitectural root causes of the transient computation, abstracting away
from the underlying covert channel and/or code gadgets required to carry
out the attack successfully. In this section, we further dissect transient
execution attacks by categorizing gadget types in two tiers and overviewing
current results on their exploitability in real-world software.

5.1 Gadget Classification

First-Tier: Execution Phase. We define a “gadget” as a series of
instructions executed by either the attacker or the victim. Table 5.6 shows
how gadget types discussed in literature can be unambiguously assigned
to one of the abstract attack phases from Figure 5.2. New gadgets can
be added straightforwardly after determining their execution phase and
objective.

5. Gadget Analysis and Classification 105

T
a
b

le
5
.6

:
G

ad
ge

t
cl

as
si

fi
ca

ti
on

ac
co

rd
in

g
to

th
e

at
ta

ck
fl
ow

an
d

w
h
et

h
er

ex
ec

u
te

d
b
y

th
e

at
ta

ck
er

(
),

v
ic

ti
m

(
),

or
ei

th
er

(
).

A
tt

a
ck

1
.

P
re

fa
c
e

2
.

T
ri

g
g
e
r

e
x
a
m

p
le

3
.

T
ra

n
si

e
n
t

5
.

R
e
c
o
n

st
ru

c
ti

o
n

C
ov

er
t

ch
an

n
el

[1
,

74
,

92
]

F
lu

sh
/P

ri
m

e/
E

v
ic

t
-

L
o
a
d
/
A

V
X

/P
o
rt

/
..
.

R
el

o
a
d
/
P

ro
b

e/
T

im
e

M
el

td
ow

n
-U

S
/R

W
/G

P
/N

M
/P

K
[8

,
48

,
56

,
78

]
(E

x
ce

p
ti

on
su

p
p
re

ss
io

n
)

m
o
v
/
r
d
m
s
r
/
F

P
U

C
o
n
tr

o
ll
ed

en
co

d
e

E
x
ce

p
ti

o
n

h
a
n
d
li
n
g

M
el

td
ow

n
-P

[8
6,

90
]

(L
1

p
re

fe
tc

h
)

m
o
v

C
o
n
tr

o
ll
ed

en
co

d
e

&
co

n
tr

o
ll
ed

d
ec

o
d
e

M
el

td
ow

n
-B

R
-

b
o
u
n
d
/
b
n
d
c
l
u

In
a
d
ve

rt
en

t
le

a
k

sa
m

e
a
s

a
bo

ve

S
p

ec
tr

e-
P

H
T

[5
0]

P
H

T
p

oi
so

n
in

g
j
z

In
a
d
ve

rt
en

t
le

a
k

C
o
n
tr

o
ll
ed

d
ec

o
d
e

S
p

ec
tr

e-
B

T
B

/R
S
B

[1
3,

50
,

52
,

59
]

B
T

B
/R

S
B

p
oi

so
n
in

g
c
a
l
l
/
j
m
p
/
r
e
t

R
O

P
-s

ty
le

en
co

d
e

C
o
n
tr

o
ll
ed

d
ec

o
d
e

S
p

ec
tr

e-
S
T

L
[2

9]
-

m
o
v

In
a
d
ve

rt
en

t
le

a
k

C
o
n
tr

o
ll
ed

d
ec

o
d
e

N
et

S
p

ec
tr

e
[7

4]
T

h
ra

sh
/r

es
et

j
z

In
a
d
ve

rt
en

t
le

a
k

In
a
d
ve

rt
en

t
tr

an
sm

it

106 Chapter 5. Systematic Evaluation of Attacks and Defenses

Importantly, our classification table highlights that gadget choice
largely depends on the attacker’s capabilities. By plugging in different
gadget types to compose the required attack phases, an almost boundless
spectrum of adversary models can be covered that is only limited by the
attacker’s capabilities. For local adversaries with arbitrary code execu-
tion (e.g., Meltdown-US [56]), the gadget functionality can be explicitly
implemented by the attacker. For sandboxed adversaries (e.g., Spectre-
PHT [50]), on the other hand, much of the gadget functionality has to
be provided by “confused deputy” code executing in the victim domain.
Ultimately, as claimed by Schwarz et al. [74], even fully remote attackers
may be able to launch Spectre attacks given that sufficient gadgets would
be available inside the victim code.

Second-Tier: Transient Leakage. During our analysis of the Linux
kernel (see Section 5.2), we discovered that gadgets required for Spectre-
PHT can be further classified in a second tier. A second tier is required
in this case as those gadgets enable different types of attacks. The first
type of gadget we found is called Prefetch. A Prefetch gadget consists
of a single array access. As such it is not able to leak data, but can
be used to load data that can then be leaked by another gadget as was
demonstrated by Meltdown-P [86]. The second type of gadget, called
Compare, loads a value like in the Prefetch gadget and then branches on
it. Using a contention channel like execution unit contention [2, 9] or an
AVX channel as claimed by Schwarz et al. [74], an attacker might be able
to leak data. We refer to the third gadget as Index gadget and it is the
double array access shown by Kocher et al. [50]. The final gadget type,
called Execute, allows arbitrary code execution, similar to Spectre-BTB.
In such a gadget, an array is indexed based on an attacker-controlled
input and the resulting value is used as a function pointer, allowing an
attacker to transiently execute code by accessing the array out-of-bounds.
Table 5.7 gives examples for all four types.

5.2 Real-World Software Gadget Prevalence

While for Meltdown-type attacks, convincing real-world exploits have been
developed to dump arbitrary process [56] and enclave [86] memory, most
Spectre-type attacks have so far only been demonstrated in controlled
environments. The most significant barrier to mounting a successful
Spectre attack is to find exploitable gadgets in real-world software, which
at present remains an important open research question in itself [59, 74].

5. Gadget Analysis and Classification 107

Table 5.7: Spectre-PHT gadget classification and the number of occurrences
per gadget type in Linux kernel v5.0.

Gadget Example (Spectre-PHT) #Occurrences

Prefetch if(i<LEN A){a[i];} 172
Compare if(i<LEN A){if(a[i]==k){};} 127
Index if(i<LEN A){y = b[a[i]*x];} 0
Execute if(i<LEN A){a[i](void);} 16

Automated Gadget Analysis. Since the discovery of transient execu-
tion attacks, researchers have tried to develop methods for the automatic
analysis of gadgets. One proposed method is called oo7 [89] and uses taint
tracking to detect Spectre-PHT Prefetch and Index gadgets. oo7 first
marks all variables that come from an untrusted source as tainted. If a
tainted variable is later on used in a branch, the branch is also tainted.
The tool then reports a possible gadget if a tainted branch is followed by
a memory access depending on the tainted variable. Guarnieri et al. [25]
mention that oo7 would still flag code locations that were patched with
Speculative Load Hardening [12] as it would still match the vulnerable
pattern.

Another approach, called Spectector [25], uses symbolic execution to
detect Spectre-PHT gadgets. It tries to formally prove that a program
does not contain any gadgets by tracking all memory accesses and jump
targets during execution along all different program paths. Additionally,
it simulates the path of mispredicted branches for a number of steps. The
program is run twice to determine whether it is free of gadgets or not.
First, it records a trace of memory accesses when no misspeculation occurs
(i.e., runs the program in its intended way). Second, it records a trace of
memory accesses with misspeculation of a certain number of instructions.
Spectector then reports a gadget if it detects a mismatch between the two
traces. One problem with the Spectector approach is scalability as it is
currently not feasible to symbolically execute large programs.

The Linux kernel developers use a different approach. They ex-
tended the Smatch static analysis tool to automatically discover potential
Spectre-PHT out-of-bounds access gadgets [10]. Specifically, Smatch finds
all instances of user-supplied array indices that have not been explicitly
hardened. Unfortunately, Smatch’s false positive rate is quite high. Ac-
cording to Carpenter [10], the tool reported 736 gadget candidates in April
2018, whereas the kernel only featured about 15 Spectre-PHT-resistant

108 Chapter 5. Systematic Evaluation of Attacks and Defenses

array indices at that time. We further investigated this by analyzing
the number of occurrences of the newly introduced array index nospec

and array index mask nospec macros in the Linux kernel per month.
Figure 5.4 shows that the number of Spectre-PHT patches has been con-
tinuously increasing over the past year. This provides further evidence
that patching Spectre-PHT gadgets in real-world software is an ongoing
effort and that automated detection methods and gadget classification
pose an important research challenge.

Academic Review. To date, only 5 academic papers have demonstrated
Spectre-type gadget exploitation in real-world software [9, 13, 29, 50,
59]. Table 5.8 reveals that they either abuse ROP-style gadgets in larger
code bases or more commonly rely on Just-In-Time (JIT) compilation to
indirectly provide the vulnerable gadget code. JIT compilers as commonly
used in e.g., JavaScript, WebAssembly, or the eBPF Linux kernel interface,
create a software-defined sandbox by extending the untrusted attacker-
provided code with runtime checks. However, the attacks in Table 5.8
demonstrate that such JIT checks can be transiently circumvented to leak
memory contents outside of the sandbox. Furthermore, in the case of
Spectre-BTB/RSB, even non-JIT compiled real-world code has been shown
to be exploitable when the attacker controls sufficient inputs to the victim
application. Kocher et al. [50] constructed a minimalist proof-of-concept
that reads attacker-controlled inputs into registers before calling a function.
Next, they rely on BTB poisoning to redirect transient control flow to a
gadget they identified in the Windows ntdll library that allows leaking
arbitrary memory from the victim process. Likewise, Chen et al. [13]
analyzed various trusted enclave runtimes for Intel SGX and found several
instances of vulnerable branches with attacker-controlled input registers,
plus numerous exploitable gadgets to which transient control flow may be
directed to leak unauthorized enclave memory. Bhattacharyya et al. [9]
analyzed common software libraries that are likely to be linked against
a victim program for gadgets. They were able to find numerous gadgets
and were able to exploit one in OpenSSL to leak information.

Case Study: Linux Kernel. To further assess the prevalence of Spectre
gadgets in real-world software, we selected the Linux kernel (Version 5.0)
as a relevant case study of a major open-source project that underwent
numerous Spectre-related security patches over the last year. We opted
for an in-depth analysis of one specific piece of software instead of a
breadth-first approach where we do a shallow analysis of multiple pieces
of software. This allowed us to analyse historical data (i.e., code locations

5. Gadget Analysis and Classification 109

Table 5.8: Spectre-type attacks on real-world software.

Attack Gadgets JIT Description

Spectre-PHT [50] 2 3 Chrome Javascript, Linux eBPF
Spectre-BTB [50] 2 3/8 Linux eBPF, Windows ntdll

Spectre-BTB [13] 336 8 SGX SDK Intel/Graphene/Rust
Spectre-BTB [9] 690 8 OpenSSL, glibc, pthread, ...
Spectre-RSB [59] 1 3 Firefox WebAssembly
Spectre-STL [29] 1 3 Partial PoC on Linux eBPF

0
40

80
O

cc
ur

re
nc

es

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

array_index_nospec
array_index_mask_nospec

Figure 5.4: Evolution of Spectre-PHT patches in the Linux kernel over time
(2018-2019).

the kernel developers deemed necessary to protect) that led to the second
tier classification discussed in Section 5.1.

There are a couple of reasons that make analysis difficult. The first
is that Linux supports many different platforms. Therefore, particular
gadgets are only available in a specific configuration. The second point is
that the number of instructions that can be transiently executed depends
on the size of the ROB [89]. As we analyze high-level code, we can only
estimate how far ahead the processor can transiently execute.

Table 5.7 shows the number of occurrences of each gadget type from our
second tier classification. While Figure 5.4 shows around 120 occurrences
of array index nospec, the number of gadgets in our analysis is higher.
The reason behind that is that multiple arrays are indexed with the same
masked index and that there are multiple branches on a value that was
loaded with a potential malicious index. Our analysis also shows that
more dangerous gadgets that either allow more than 1-bit leakage or even
arbitrary code execution are not frequently occurring. Even if one is found,
it might still be hard to exploit. During our analysis, we also discovered
that the patch had been reverted in 13 locations, indicating that there is
also some confusion among the kernel developers what needs to be fixed.

110 Chapter 5. Systematic Evaluation of Attacks and Defenses

Table 5.9: Categorization of Spectre defenses and systematic overview of their
microarchitectural target.

Defense In
vi

si
Sp

ec
Sa

fe
Sp

ec
D

A
W

G
T
ai

nt
T
ra

ck
in

g

T
im

er
R

ed
uc

ti
on

R
SB

St
uffi

ng
R

et
p
ol

in
e

SL
H

Y
SN

B
IB

R
S

ST
IB

P
IB

P
B

Se
ri

al
iz

at
io

n
Sl

ot
h

SS
B

D
/S

SB
B

P
oi

so
n

V
al

ue
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n

M
ic

ro
a
rc

h
it

e
c
tu

ra
l

E
le

m
e
n
t

Cache
TLB
BTB
BHB
PHT
RSB
AVX
FPU
Ports

C1 C2 C3

A defense considers the microarchitectural element (), partially considers it or same

technique possible for it () or does not consider it at all ().

6 Defenses

In this section, we discuss proposed defenses in software and hardware
for Spectre and Meltdown variants. We propose a classification scheme
for defenses based on their attempt to stop leakage, similar to Miller [62].
Our work differs from Miller in three points. First, ours extends to newer
transient execution attacks. Second, we consider Meltdown and Spectre as
two problems with different root causes, leading to a different classification.
Third, it helped uncover problems that were not clear with the previous
classification.

We categorize Spectre-type defenses into three categories:

C1: Mitigating or reducing the accuracy of covert channels used to
extract the secret data.

C2: Mitigating or aborting speculation if data is potentially accessible
during transient execution.

C3: Ensuring that secret data cannot be reached.

Table 5.9 lists proposed defenses against Spectre-type attacks and
assigns them to the category they belong.

We categorize Meltdown-type defenses into two categories:

6. Defenses 111

D1: Ensuring that architecturally inaccessible data remains inaccessible
on the microarchitectural level.

D2: Preventing the occurrence of faults.

6.1 Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels. Transient
execution attacks use a covert channel to transfer a microarchitectural state
change induced by the transient instruction sequence to the architectural
level. One approach in mitigating Spectre-type attacks is reducing the
accuracy of covert channels or preventing them.

Hardware. One enabler of transient execution attacks is that the tran-
sient execution sequence introduces a microarchitectural state change
the receiving end of the covert channel observes. To secure CPUs, Safe-
Spec [45] introduces shadow hardware structures used during transient
execution. Thereby, any microarchitectural state change can be squashed
if the prediction of the CPU was incorrect. While their prototype im-
plementation protects only caches (and the TLB), other channels, e.g.,
DRAM buffers [69], or execution unit congestion [1, 9, 56], remain open.

Yan et al. [91] proposed InvisiSpec, a method to make transient loads
invisible in the cache hierarchy. By using a speculative buffer, all transiently
executed loads are stored in this buffer instead of the cache. Similar to
SafeSpec, the buffer is invalidated if the prediction was incorrect. However,
if the prediction was correct, the content of the buffer is loaded into the
cache. For data coherency, InvisiSpec compares the loaded value during
this process with the most recent, up-to-date value from the cache. If a
mismatch occurs, the transient load and all successive instructions are
reverted. Since InvisSpec only protects the caching hierarchy of the CPU,
an attacker can still exploit other covert channels.

Kiriansky et al. [47] securely partition the cache across its ways. With
protection domains that isolate on a cache hit, cache miss and metadata
level, cache-based covert channels are mitigated. This does not only
require changes to the cache and adaptions to the coherence protocol but
also enforces the correct management of these domains in software.

Kocher et al. [50] proposed to limit data from entering covert channels
through a variation of taint tracking. The idea is that the CPU tracks data
loaded during transient execution and prevents their use in subsequent
operations.

Software. Many covert channels require an accurate timer to distinguish
microarchitectural states, e.g., measuring the memory access latency to

112 Chapter 5. Systematic Evaluation of Attacks and Defenses

distinguish between a cache hit and cache miss. With reduced timer
accuracy an attacker cannot distinguish between microarchitectural states
any longer, the receiver of the covert channel cannot deduce the sent
information. To mitigate browser-based attacks, many web browsers
reduced the accuracy of timers in JavaScript by adding jitter [61, 70,
80, 88]. However, Schwarz et al. [73] demonstrated that timers can be
constructed in many different ways and, thus, further mitigations are
required [71]. While Chrome initially disabled SharedArrayBuffers in
response to Meltdown and Spectre [80], this timer source has been re-
enabled with the introduction of site-isolation [77].

NetSpectre requires different strategies due to its remote nature.
Schwarz et al. [74] propose to detect the attack using DDoS detection
mechanisms or adding noise to the network latency. By adding noise, an
attacker needs to record more traces. Adding enough noise makes the
attack infeasible in practice as the amount of traces as well as the time
required for averaging it out becomes too large [87].

C2: Mitigating or aborting speculation if data is potentially
accessible during transient execution. Since Spectre-type attacks
exploit different prediction mechanisms used for speculative execution, an
effective approach would be to disable speculative execution entirely [50,
79]. As the loss of performance for commodity computers and servers
would be too drastic, another proposal is to disable speculation only while
processing secret data.

Hardware. A building blocks for some variants of Spectre is branch
poisoning (an attacker mistrains a prediction mechanism, cf. Section 3).
To deal with mistraining, both Intel and AMD extended the instruction set
architecture (ISA) with a mechanism for controlling indirect branches [4,
40]. The proposed addition to the ISA consists of three controls:

• Indirect Branch Restricted Speculation (IBRS) prevents indirect
branches executed in privileged code from being influenced by those
in less privileged code. To enforce this, the CPU enters the IBRS
mode which cannot be influenced by any operations outside of it.

• Single Thread Indirect Branch Prediction (STIBP) restricts shar-
ing of branch prediction mechanisms among code executing across
hyperthreads.

• The Indirect Branch Predictor Barrier (IBPB) prevents code that
executes before it from affecting the prediction of code following it
by flushing the BTB.

For existing ARM implementations, there are no generic mitigation
techniques available. However, some CPUs implement specific controls that

6. Defenses 113

allow invalidating the branch predictor which should be used during context
switches [6]. On Linux, those mechanisms are enabled by default [46].
With the ARMv8.5-A instruction set [7], ARM introduces a new barrier
(sb) to limit speculative execution on following instructions. Furthermore,
new system registers allow to restrict speculative execution and new
prediction control instructions prevent control flow predictions (cfp), data
value prediction (dvp) or cache prefetch prediction (cpp) [7].

To mitigate Spectre-STL, ARM introduced a new barrier called SSBB

that prevents a load following the barrier from bypassing a store using the
same virtual address before it [6]. For upcoming CPUs, ARM introduced
Speculative Store Bypass Safe (SSBS); a configuration control register to
prevent the re-ordering of loads and stores [6]. Likewise, Intel [40] and
AMD [3] provide Speculative Store Bypass Disable (SSBD) microcode
updates that mitigate Spectre-STL.

As an academic contribution, plausible hardware mitigations have
furthermore been proposed [48] to prevent transient computations on
out-of-bounds writes (Spectre-PHT).

Software. Intel and AMD proposed to use serializing instructions like
lfence on both outcomes of a branch [4, 31]. ARM introduced a full
data synchronization barrier (DSB SY) and an instruction synchronization
barrier (ISB) that can be used to prevent speculation [6]. Unfortunately,
serializing every branch would amount to completely disabling branch
prediction, severely reducing performance [31]. Hence, Intel further pro-
posed to use static analysis [31] to minimize the number of serializing
instructions introduced. Microsoft uses the static analyzer of their C Com-
piler MSVC [68] to detect known-bad code patterns and insert lfence

instructions automatically. Open Source Security Inc. [66] use a similar
approach using static analysis. Kocher [49] showed that this approach
misses many gadgets that can be exploited.

Serializing instructions can also reduce the effect of indirect branch
poisoning. By inserting it before the branch, the pipeline prior to it is
cleared, and the branch is resolved quickly [4]. This, in turn, reduces the
size of the speculation window in case that misspeculation occurs.

While lfence instructions stop speculative execution, Schwarz et al.
[74] showed they do not stop microarchitectural behaviors happening
before execution. This, for instance, includes powering up the AVX
functional units, instruction cache fills, and iTLB fills which still leak
data.

Evtyushkin et al. [18] propose a similar method to serializing instruc-
tions, where a developer annotates potentially leaking branches. When

114 Chapter 5. Systematic Evaluation of Attacks and Defenses

indicated, the CPU should not predict the outcome of these branches and
thus stop speculation.

Additionally to the serializing instructions, ARM also introduced a
new barrier (CSDB) that in combination with conditional selects or moves
controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used by LLVM
and was proposed by Carruth [12]. Using this idea, loads are checked
using branchless code to ensure that they are executing along a valid
control flow path. To do this, they transform the code at the compiler
level and introduce a data dependency on the condition. In the case
of misspeculation, the pointer is zeroed out, preventing it from leaking
data through speculative execution. One prerequisite for this approach is
hardware that allows the implementation of a branchless and unpredicted
conditional update of a register’s value. As of now, the feature is only
available in LLVM for x86 as the patch for ARM is still under review. GCC
adopted the idea of SLH for their implementation, supporting both x86
and ARM. They provide a builtin function to either emit a speculation
barrier or return a safe value if it determines that the instruction is
transient [17].

Oleksenko et al. [65] propose an approach similar to Carruth [12].
They exploit that CPUs have a mechanism to detect data dependencies
between instructions and introduce such a dependency on the comparison
arguments. This ensures that the load only starts when the comparison is
either in registers or the L1 cache, reducing the speculation window to
a non-exploitable size. They already note that their approach is highly
dependent on the ordering of instructions as the CPU might perform
the load before the comparison. In that case, the attack would still be
possible.

Google proposes a method called retpoline [83], a code sequence that
replaces indirect branches with return instructions, to prevent branch
poisoning. This method ensures that return instructions always speculate
into an endless loop through the RSB. The actual target destination
is pushed on the stack and returned to using the ret instruction. For
retpoline, Intel [39] notes that in future CPUs that have Control-flow
Enforcement Technology (CET) capabilities to defend against ROP attacks,
retpoline might trigger false positives in the CET defenses. To mitigate
this possibility, future CPUs also implement hardware defenses for Spectre-
BTB called enhanced IBRS [39].

On Skylake and newer architectures, Intel [39] proposes RSB stuffing to
prevent an RSB underfill and the ensuing fallback to the BTB. Hence, on

6. Defenses 115

every context switch into the kernel, the RSB is filled with the address of
a benign gadget. This behavior is similar to retpoline. For Broadwell and
older architectures, Intel [39] provided a microcode update to make the ret
instruction predictable, enabling retpoline to be a robust defense against
Spectre-BTB. Windows has also enabled retpoline on their systems [14].

C3: Ensuring that secret data cannot be reached. Different
projects use different techniques to mitigate the problem of Spectre. We-
bKit employs two such techniques to limit the access to secret data [70].
WebKit first replaces array bound checks with index masking. By applying
a bit mask, WebKit cannot ensure that the access is always in bounds,
but introduces a maximum range for the out-of-bounds violation. In the
second strategy, WebKit uses a pseudo-random poison value to protect
pointers from misuse. Using this approach, an attacker would first have to
learn the poison value before he can use it. The more significant impact
of this approach is that mispredictions on the branch instruction used for
type checks results in the wrong type being used for the pointer.

Google proposes another defense called site isolation [81], which is
now enabled in Chrome by default. Site isolation executes each site in its
own process and therefore limits the amount of data that is exposed to
side-channel attacks. Even in the case where the attacker has arbitrary
memory reads, he can only read data from its own process.

Kiriansky and Waldspurger [48] propose to restrict access to sensitive
data by using protection keys like Intel Memory Protection Key (MPK)
technology [35]. They note that by using Spectre-PHT an attacker can
first disable the protection before reading the data. To prevent this, they
propose to include an lfence instruction in wrpkru, an instruction used
to modify protection keys.

6.2 Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data remains
inaccessible on the microarchitectural level.

The fundamental problem of Meltdown-type attacks is that the CPU
allows the transient instruction stream to compute on architecturally
inaccessible values, and hence, leak them. By assuring that execution does
not continue with unauthorized data after a fault, such attacks can be
mitigated directly in silicon. This design is enforced in AMD processors [4],
and more recently also in Intel processors from Whiskey Lake onwards
that enumerate RDCL NO support [40]. However, mitigations for existing
microarchitectures are necessary, either through microcode updates, or

116 Chapter 5. Systematic Evaluation of Attacks and Defenses

operating-system-level software workarounds. These approaches aim to
keep architecturally inaccessible data also inaccessible at the microarchi-
tectural level.

Gruss et al. originally proposed KAISER [22, 23] to mitigate side-
channel attacks defeating KASLR. However, it also defends against
Meltdown-US attacks by preventing kernel secrets from being mapped
in user space. Besides its performance impact, KAISER has one practi-
cal limitation [22, 56]. For x86, some privileged memory locations must
always be mapped in user space. KAISER is implemented in Linux as
kernel page-table isolation (KPTI) [58] and has also been backported to
older versions. Microsoft provides a similar patch as of Windows 10 Build
17035 [42] and Mac OS X and iOS have similar patches [41].

For Meltdown-GP, where the attacker leaks the contents of system
registers that are architecturally not accessible in its current privilege level,
Intel released microcode updates [31]. While AMD is not susceptible [5],
ARM incorporated mitigations in future CPU designs and suggests to
substitute the register values with dummy values on context switches for
CPUs where mitigations are not available [6].

Preventing the access-control race condition exploited by Foreshadow
and Meltdown may not be feasible with microcode updates [86]. Thus,
Intel proposes a multi-stage approach to mitigate Foreshadow (L1TF)
attacks on current CPUs [30, 90]. First, to maintain process isolation, the
operating system has to sanitize the physical address field of unmapped
page-table entries. The kernel either clears the physical address field, or
sets it to non-existent physical memory. In the case of the former, Intel
suggests placing 4 KB of dummy data at the start of the physical address
space, and clearing the PS bit in page tables to prevent attackers from
exploiting huge pages.

For SGX enclaves or hypervisors, which cannot trust the address
translation performed by an untrusted OS, Intel proposes to either store
secrets in uncacheable memory (as specified in the PAT or the MTRRs),
or flush the L1 data cache when switching protection domains. With
recent microcode updates, L1 is automatically flushed upon enclave exit,
and hypervisors can additionally flush L1 before handing over control
to an untrusted virtual machine. Flushing the cache is also done upon
exiting System Management Mode (SMM) to mitigate Foreshadow-NG
attacks on SMM.

To mitigate attacks across logical cores, Intel supplied a microcode
update to ensure that different SGX attestation keys are derived when
hyperthreading is enabled or disabled. To ensure that no non-SMM

6. Defenses 117

software runs while data belonging to SMM are in the L1 data cache,
SMM software must rendezvous all logical cores upon entry and exit.
According to Intel, this is expected to be the default behavior for most
SMM software [30]. To protect against Foreshadow-NG attacks when
hyperthreading is enabled, the hypervisor must ensure that no hypervisor
thread runs on a sibling core with an untrusted VM.

D2: Preventing the occurrence of faults. Since Meltdown-type
attacks exploit delayed exception handling in the CPU, another mitigation
approach is to prevent the occurrence of a fault in the first place. Thus,
accesses which would normally fault, become (both architecturally and
microarchitecturally) valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page semantics, where
accessing enclave memory from the outside returns -1 instead of faulting.
Thus, SGX has inadvertent protection against Meltdown-US. However,
the Foreshadow [86] attack showed that it is possible to actively provoke
another fault by unmapping the enclave page, making SGX enclaves
susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for Meltdown-NM [78]
that is deployed since Linux 4.6 [57]. By replacing lazy switching with
eager switching, the FPU is always available, and access to the FPU can
never fault. Here, the countermeasure is effective, as there is no other way
to provoke a fault when accessing the FPU.

6.3 Evaluation of Defenses

Spectre Defenses. We evaluate defenses based on their capabilities of
mitigating Spectre attacks. Defenses that require hardware modifications
are only evaluated theoretically. In addition, we discuss which vendors
have CPUs vulnerable to what type of Spectre- and Meltdown-type attack.
The results of our evaluation are shown in Table 5.10.

Several defenses only consider a specific covert channel (see Table 5.9),
i.e., they only try to prevent an attacker from recovering the data using
a specific covert channel instead of targeting the root cause of the vul-
nerability. Therefore, they can be subverted by using a different one. As
such, they can not be considered a reliable defense. Other defenses only
limit the amount of data that can be leaked [70, 81] or simply require
more repetitions on the attacker side [74, 87]. Therefore, they are only
partial solutions. RSB stuffing only protects a cross-process attack but
does not mitigate a same-process attack. Many of the defenses are not
enabled by default or depend on the underlying hardware and operating

118 Chapter 5. Systematic Evaluation of Attacks and Defenses

system [3, 4, 6, 40]. With serializing instructions [4, 6, 31] after a bounds
check, we were still able to leak data on Intel and ARM (only with DSB

SY+ISH instruction) through a single memory access and the TLB. On
ARM, we observed no leakage following a CSDB barrier in combination
with conditional selects or moves. We also observed no leakage with SLH,
although the possibility remains that our experiment failed to bypass the
mitigation. Taint tracking theoretically mitigates all forms of Spectre-
type attacks as data that has been tainted cannot be used in a transient
execution. Therefore, the data does not enter a covert channel and can
subsequently not be leaked.

Meltdown Defenses. We verified whether we can still execute
Meltdown-type attacks on a fully-patched system. On a Ryzen Threadrip-
per 1920X, we were still able to execute Meltdown-BND. On an i5-6200U
(Skylake), an i7-8700K (Coffee Lake), and an i7-8565U (Whiskey Lake),
we were able to successfully run a Meltdown-MPX, Meltdown-BND, and
Meltdown-RW attack. Additionally to those, we were also able to run
a Meltdown-PK attack on an Amazon EC2 C5 instance (Skylake-SP).
Our results indicate that current mitigations only prevent Meltdown-type
attacks that cross the current privilege level. We also tested whether
we can still successfully execute a Meltdown-US attack on a recent Intel
Whiskey Lake CPU without KPTI enabled, as Intel claims these processors
are no longer vulnerable. In our experiments, we were indeed not able to
leak any data on such CPUs but encourage other researchers to further
investigate newer processor generations.

6.4 Performance Impact of Countermeasures

There have been several reports on performance impacts of selected coun-
termeasures. Some report the performance impact based on real-world
scenarios (top of Table 5.11) while others use a specific benchmark that
might not resemble real-world usage (lower part of Table 5.11). Based on
the different testing scenarios, the results are hard to compare. To further
complicate matters, some countermeasures require hardware modifications
that are not available, and it is therefore hard to verify the performance
loss.

One countermeasure that stands out with a huge decrease in per-
formance is serialization and highlights the importance of speculative
execution to improve CPU performance. Another interesting countermea-
sure is KPTI. While it was initially reported to have a huge impact on
performance, recent work shows that the decrease is almost negligible

6. Defenses 119

Table 5.10: Spectre defenses and which attacks they mitigate.

Attack
Defense

I
n
v
i
s
i
S
p
e
c

S
a
f
e
S
p
e
c

D
A
W
G

R
S

B
S

tu
ffi

n
g

R
et

po
li

n
e

P
o
is

o
n

V
a
lu

e
In

d
ex

M
a
sk

in
g

S
it

e
Is

o
la

ti
o
n

S
L

H
Y
S
N
B

IB
R

S
S

T
IB

P
IB

P
B

S
er

ia
li

za
ti

o
n

T
a
i
n
t
T
r
a
c
k
i
n
g

T
im

er
R

ed
u

ct
io

n
S
l
o
t
h

S
S

B
D

/
S

S
B

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not mitigated (),

theoretically mitigated (), theoretically impeded (), not theoretically impeded (),

or out of scope (). Defenses in italics are production-ready, while typeset defenses

are academic proposals.

on systems that support PCID [20]. To mitigate Spectre and Meltdown,
current systems rely on a combination of countermeasures. To show
the overall decrease on a Linux 4.19 kernel with the default mitigations
enabled, Larabel [54] performed multiple benchmarks to determine the
impact. On Intel, the slowdown was 7-16% compared to a non-mitigated
kernel, on AMD it was 3-4%.

Naturally, the question arises which countermeasures to enable. For
most users, the risk of exploitation is low, and default software mitigations
as provided by Linux, Microsoft, or Apple likely are sufficient. This is
likely the optimum between potential attacks and reasonable performance.
For data centers, it is harder as it depends on the needs of their customers
and one has to evaluate this on an individual basis.

120 Chapter 5. Systematic Evaluation of Attacks and Defenses

Table 5.11: Reported performance impacts of countermeasures. Top shows
performance impact in real-world scenarios while the bottom shows
it on a specific benchmark.

Defense Evaluation Penalty Benchmark

KAISER/KPTI [21] 0–2.6 % System call rates
Retpoline [11] 5–10 % Real-world workload servers
Site Isolation [81] 10–13 % Memory overhead

InvisiSpec [91] 22 % SPEC
SafeSpec [45] -3 % SPEC on MARSSx86
DAWG [47] 1–15 % PARSEC , GAPBS
SLH [12] 29–36.4 % Google microbenchmark suite
YSNB [65] 60 % Phoenix
IBRS [82] 20–30 % Sysbench 1.0.11
STIBP [53] 30–50 % Rodinia OpenMP, DaCapo
Serialization [12] 62–74.8 % Google microbenchmark suite
SSBD/SSBB [15] 2–8 % SYSmark 2018, SPEC integer
L1TF Mitigations [38] -3–31 % SPEC

7 Future Work and Conclusion

Future Work. For Meltdown-type attacks, it is important to deter-
mine where data is actually leaked from. For instance, Lipp et al. [56]
demonstrated that Meltdown-US can not only leak data from the L1
data cache and main memory but even from memory locations that are
explicitly marked as “uncacheable” and are hence served from the Line
Fill Buffer (LFB).

1
In future work, other Meltdown-type attacks should

be tested to determine whether they can also leak data from different
microarchitectural buffers. In this paper, we presented a small evaluation
of the prevalence of gadgets in real-world software. Future work should
develop methods for automating the detection of gadgets and extend the
analysis on a larger amount of real-world software. We have also discussed

1
The initial Meltdown-US disclosure (December 2017) and subsequent paper [56]

already made clear that Meltdown-type leakage is not limited to the L1 data cache.
We sent Intel a PoC leaking uncacheable-typed memory locations from a concurrent
hyperthread on March 28, 2018. We clarified to Intel on May 30, 2018, that we attribute
the source of this leakage to the LFB. In our experiments, this works identically
for Meltdown-P (Foreshadow). This issue was acknowledged by Intel, tracked under
CVE-2019-11091, and remained under embargo until May 14, 2019.

7. Future Work and Conclusion 121

mitigations and shown that some of them can be bypassed or do not target
the root cause of the problem. We encourage both offensive and defensive
research that may use our taxonomy as a guiding principle to discover
new attack variants and develop mitigations that target the root cause of
transient information leakage.

Conclusion. Transient instructions reflect unauthorized computations
out of the program’s intended code and/or data paths. We presented
a systematization of transient execution attacks. Our systematization
uncovered 6 (new) transient execution attacks (Spectre and Meltdown
variants) which have been overlooked and have not been investigated so
far. We demonstrated these variants in practical proof-of-concept attacks
and evaluated their applicability to Intel, AMD, and ARM CPUs. We
also presented a short analysis and classification of gadgets as well as
their prevalence in real-world software. We also systematically evaluated
defenses, discovering that some transient execution attacks are not suc-
cessfully mitigated by the rolled out patches and others are not mitigated
because they have been overlooked. Hence, we need to think about future
defenses carefully and plan to mitigate attacks and variants that are yet
unknown.

Acknowledgments

We want to thank the anonymous reviewers and especially our shep-
herd, Jonathan McCune, for their helpful comments and suggestions that
substantially helped in improving the paper.

This work has been supported by the Austrian Research Promotion
Agency (FFG) via the K-project DeSSnet, which is funded in the context
of COMET – Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia. This work has been supported by the
Austrian Research Promotion Agency (FFG) via the project ESPRESSO,
which is funded by the province of Styria and the Business Promotion
Agencies of Styria and Carinthia. This project has received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No
681402). This research received funding from the Research Fund KU
Leuven, and Jo Van Bulck is supported by the Research Foundation –
Flanders (FWO). Evtyushkin acknowledges the start-up grant from the
College of William and Mary. Additional funding was provided by generous
gifts from ARM and Intel. Any opinions, findings, and conclusions or

122 Chapter 5. Systematic Evaluation of Attacks and Defenses

recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

References 123

References

[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. Port Contention for Fun
and Profit. 2018.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. “Port Contention for Fun
and Profit.” In: ePrint 2018/1060 (2018).

[3] AMD. AMD64 Technology: Speculative Store Bypass Disable. Revi-
sion 5.21.18. 2018.

[4] AMD. Software Techniques for Managing Speculation on AMD
Processors. Revison 7.10.18. 2018.

[5] AMD. Spectre Mitigation Update. July 2018.

[6] ARM. Cache Speculation Side-channels. Version 2.4. 2018.

[7] ARM Limited. ARM A64 Instruction Set Architecture. 2018.

[8] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018.

[9] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias
Payer, and Anil Kurmus. “SMoTherSpectre: exploiting speculative
execution through port contention.” In: arXiv:1903.01843 (2019).

[10] Dan Carpenter. Smatch check for Spectre stuff. Apr. 2018.

[11] Chandler Carruth. Jan. 2018. url: https://reviews.llvm.org/

D41723.

[12] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant #1 mitigation). Mar. 2018.

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. “SGXPECTRE Attacks: Leaking
Enclave Secrets via Speculative Execution.” In: arXiv:1802.09085
(2018).

[14] Microsoft Corp. Mar. 2019. url: https://support.microsoft.com/
en-us/help/4482887/windows-10-update-kb4482887.

[15] Leslie Culbertson. “Addressing New Research for Side-Channel
Analysis.” In: Intel. May 2018.

https://reviews.llvm.org/D41723
https://reviews.llvm.org/D41723
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

124 Chapter 5. Systematic Evaluation of Attacks and Defenses

[16] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sand-
hya Dwarkadas. “Spectres, virtual ghosts, and hardware support.”
In: Workshop on Hardware and Architectural Support for Security
and Privacy. 2018.

[17] Richard Earnshaw. Mitigation against unsafe data speculation
(CVE-2017-5753). July 2018.

[18] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. “BranchScope: A New Side-Channel At-
tack on Directional Branch Predictor.” In: ASPLOS’18. 2018.

[19] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016.

[20] Brendan Gregg. KPTI/KAISER Meltdown Initial Performance
Regressions. 2018.

[21] Daniel Gruss, Dave Hansen, and Brendan Gregg. “Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.”
In: USENIX ;login (2018).

[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR.” In: ESSoS. 2017.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR.” In: CCS. 2016.

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches.” In: USENIX Security Symposium. 2015.

[25] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. “SPECTECTOR: Principled Detection of Specu-
lative Information Flows.” In: arXiv:1812.08639 (2018).

[26] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. “A Faster and More Realistic Flush+Reload Attack on
AES.” In: Constructive Side-Channel Analysis and Secure Design.
2015.

[27] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael Scott, Kai Shen, and Mike Marty. Janus: Intra-
Process Isolation for High-Throughput Data Plane Libraries. 2018.

References 125

[28] Jann Horn. Reading privileged memory with a side-channel. Jan.
2018.

[29] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018.

[30] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. Aug. 2018.

[31] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. July 2018.

[32] Intel. Intel Software Guard Extensions (Intel SGX). 2016.

[33] Intel. Intel Xeon Processor Scalable Family Technical Overview.
Sept. 2017.

[34] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2017.

[35] Intel. “Intel 64 and IA-32 Architectures Software Developer
′
s Man-

ual, Volume 3 (3A, 3B & 3C): System Programming Guide.” In:
325384 (2016).

[36] Intel. More Information on Transient Execution Findings. 2018.
url: https://software.intel.com/security-software-guidance/
insights/more-information-transient-execution-findings.

[37] Intel. Q2 2018 Speculative Execution Side Channel Update. May
2018.

[38] Intel. Resources and Response to Side Channel L1 Terminal Fault.
Aug. 2018.

[39] Intel. Retpoline: A Branch Target Injection Mitigation. Revision
003. June 2018.

[40] Intel. Speculative Execution Side Channel Mitigations. Revision 3.0.
May 2018.

[41] Alex Ionescu. Twitter: Apple Double Map. 2017. url: https://

twitter.com/aionescu/status/948609809540046849.

[42] Alex Ionescu. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER). 2017. url: https : / / twitter . com /

aionescu/status/930412525111296000.

[43] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES.” In:
RAID’14. 2014.

https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/930412525111296000
https://twitter.com/aionescu/status/930412525111296000

126 Chapter 5. Systematic Evaluation of Attacks and Defenses

[44] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “SPOILER:
Speculative Load Hazards Boost Rowhammer and Cache Attacks.”
In: arXiv:1903.00446 (2019).

[45] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. “SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation.” In: arXiv:1806.05179 (2018).

[46] Russel King. ARM: spectre-v2: harden branch predictor on context
switches. 2018.

[47] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. “DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors.” In: ePrint 2018/418
(May 2018).

[48] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

[49] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018.

[50] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[51] Paul C. Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems.” In: CRYPTO. 1996.

[52] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.

[53] Michael Larabel. Bisected: The Unfortunate Reason Linux 4.20 Is
Running Slower. Nov. 2018.

[54] Michael Larabel. The Performance Cost Of Spectre / Meltdown /
Foreshadow Mitigations On Linux 4.19. Aug. 2018.

[55] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile
Devices.” In: USENIX Security Symposium. 2016.

[56] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[57] Andy Lutomirski. x86/fpu: Hard-disable lazy FPU mode. June
2018.

References 127

[58] LWN. The current state of kernel page-table isolation. Dec.
2017. url: https : / / lwn . net / SubscriberLink / 741878 /

eb6c9d3913d7cb2b/.

[59] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers.” In: CCS. 2018.

[60] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud.” In: NDSS. 2017.

[61] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. Jan. 2018.

[62] Matt Miller. Mitigating speculative execution side channel hardware
vulnerabilities. Mar. 2018.

[63] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Florian
Kelbert, Christian Priebe, Josh Lind, Huanzhou Zhu, and Peter
Pietzuch. Spectre attack against SGX enclave. Jan. 2018.

[64] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal
Felber, and Christof Fetzer. “Intel MPX Explained: An Empir-
ical Study of Intel MPX and Software-based Bounds Checking
Approaches.” In: arXiv:1702.00719 (2017).

[65] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. “You Shall Not Bypass: Employing data depen-
dencies to prevent Bounds Check Bypass.” In: arXiv:1805.08506
(2018).

[66] Open Source Security Inc. Respectre: The State of the Art in Spectre
Defenses. Oct. 2018.

[67] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES.” In: CT-RSA. 2006.

[68] Andrew Pardoe. Spectre mitigations in MSVC. 2018.

[69] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks.” In: USENIX Security Symposium. 2016.

[70] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. Jan.
2018.

[71] Michael Schwarz, Moritz Lipp, and Daniel Gruss. “JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks.” In: NDSS. 2018.

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

128 Chapter 5. Systematic Evaluation of Attacks and Defenses

[72] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks.” In: NDSS. 2018.

[73] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript.” In: FC. 2017.

[74] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel
Gruss. “NetSpectre: Read Arbitrary Memory over Network.” In:
arXiv:1807.10535 (2018).

[75] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

[76] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
“T-SGX: Eradicating controlled-channel attacks against enclave
programs.” In: NDSS. 2017.

[77] Ben Smith. Enable SharedArrayBuffer by default on non-android.
Aug. 2018.

[78] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.” In:
arXiv:1806.07480 (2018).

[79] SUSE. Security update for kernel-firmware. 2018. url: https://www.
suse.com/support/update/announcement/2018/suse-su-20180008-

1/.

[80] The Chromium Projects. Actions required to mitigate Speculative
Side-Channel Attack techniques. 2018.

[81] The Chromium Projects. Site Isolation. 2018.

[82] Vadim Tkachenko. 20-30% Performance Hit from the Spectre Bug
Fix on Ubuntu. Jan. 2018.

[83] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018.

[84] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and
Peter Druschel. “ERIM: Secure and Efficient In-process Isolation
with Memory Protection Keys.” In: arXiv:1801.06822 (2018).

[85] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic.” In: CCS. 2018.

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/

References 129

[86] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution.” In:
USENIX Security Symposium. 2018.

[87] Kenton Varda. WebAssembly’s post-MVP future. 2018. url: https:
//news.ycombinator.com/item?id=18279791.

[88] Luke Wagner. Mitigations landing for new class of timing attack.
Jan. 2018.

[89] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika
Mitra, and Abhik Roychoudhury. “oo7: Low-overhead Defense
against Spectre Attacks via Binary Analysis.” In: arXiv:1807.05843
(2018).

[90] Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. 2018.

[91] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. “InvisiSpec: Mak-
ing Speculative Execution Invisible in the Cache Hierarchy.” In:
MICRO. 2018.

[92] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014.

https://news.ycombinator.com/item?id=18279791
https://news.ycombinator.com/item?id=18279791

6
KASLR: Break It, Fix It, Repeat

Publication Data

Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. “KASLR: Break It, Fix It, Repeat.” In: AsiaCCS.
2020

Contributions

Main author.

131

132 Chapter 6. KASLR: Break It, Fix It, Repeat

KASLR: Break It, Fix It, Repeat

Claudio Canella, Michael Schwarz, Martin Haubenwallner
Martin Schwarzl, Daniel Gruss

Graz University of Technology, Austria

Abstract

In this paper, we analyze the hardware-based Meltdown mitigations in
recent Intel microarchitectures, revealing that illegally accessed data is
only zeroed out. Hence, while non-present loads stall the CPU, illegal
loads are still executed. We present EchoLoad, a novel technique to
distinguish load stalls from transiently executed loads. EchoLoad al-
lows detecting physically-backed addresses from unprivileged applications,
breaking KASLR in 40 µs on the newest Meltdown- and MDS-resistant
Cascade Lake microarchitecture. As EchoLoad only relies on memory
loads, it runs in highly-restricted environments, e.g., SGX or JavaScript,
making it the first JavaScript-based KASLR break. Based on EchoLoad,
we demonstrate the first proof-of-concept Meltdown attack from Java-
Script on systems that are still broadly not patched against Meltdown,
i.e., 32-bit x86 OSs.

We propose FLARE, a generic mitigation against known microarchi-
tectural KASLR breaks with negligible overhead. By mapping unused
kernel addresses to a reserved page and mirroring neighboring permission
bits, we make used and unused kernel memory indistinguishable, i.e., a
uniform behavior across the entire kernel address space, mitigating the
root cause behind microarchitectural KASLR breaks. With incomplete
hardware mitigations, we propose to deploy FLARE even on recent CPUs.

1 Introduction

CPUs are optimized for performance and efficiency. Some optimizations
are exposed to the user via the instruction-set architecture (ISA), the
hardware-software interface, but most are transparent to the developer.
CPU vendors can implement any optimizations while still adhering to the
ISA, without taking security into account.

The original publication is available at https://dl.acm.org/doi/abs/10.
1145/3320269.3384747.

https://dl.acm.org/doi/abs/10.1145/3320269.3384747
https://dl.acm.org/doi/abs/10.1145/3320269.3384747

1. Introduction 133

As a consequence, many attacks on the microarchitectural CPU state
have been published [24]. Most of these are side-channel attacks, including
attacks on cryptographic algorithms [4, 45, 46, 60, 69, 71, 96], on user
interactions [33, 58, 79], but also covert data transmission [60, 62, 94,
95]. Meltdown [59], Foreshadow [88, 93], RIDL [74], ZombieLoad [80],
and Fallout [10] are recent microarchitectural attacks that go beyond side-
channel attacks and directly leak (arbitrary) data instead of metadata.
These attacks, commonly referred to as Meltdown-type transient-execution
attacks [9], exploit the lazy fault handling property of some CPUs. With
lazy fault handling, the CPU continues using data in the out-of-order
execution even if the loading of the data resulted in a fault, e.g., failed
the privilege-level check. While the data never becomes visible on the
architectural level, it is encoded in the microarchitectural state, i.e., in
the cache. From there, it is made visible on the architectural level using
microarchitectural side-channel attacks.

Meltdown-type transient-execution attacks [9] break the hardware
enforced-isolation between the trusted kernel and untrusted user programs.
These attacks, which are present in most Intel CPUs, showed that it is
not always possible to protect an application against side-channel attacks.
This is contrary to the belief that side-channel attacks have to be prevented
by the application itself [5, 46].

Deeply rooted in the CPU, either close to or in the critical path,
most transient-execution attacks cannot be fixed with microcode updates.
However, on recent CPUs, Intel introduced hardware mitigations for the
first Meltdown-type attacks [17, 40, 42]. On the latest microarchitecture
(Cascade Lake), all known Meltdown-type attacks are mitigated in hard-
ware [37]. However, due to their severity and the ease of exploitation,
operating systems (OSs) rolled out software-based mitigations to prevent
Meltdown [29]. These software mitigations introduce a stricter separation
of user and kernel space [30, 32]. This stricter separation does not only
prevent Meltdown but also prevents other microarchitectural attacks on
the kernel [30], e.g., KASLR (kernel address space layout randomization)
breaks [32, 36, 49] which allow an attacker to de-randomize the location of
the kernel in the address space. As a drawback, these software mitigations
may introduce significant performance overhead. This is especially true for
workloads that need frequent switching between user and kernel space [29].
Consequently, hardware manufacturers solved the underlying root cause
directly in recent CPUs, making the software mitigations obsolete.

Even though new CPUs are not vulnerable anymore to the original
Meltdown attack, we show that they still show signs of Meltdown-type

134 Chapter 6. KASLR: Break It, Fix It, Repeat

effects. In this paper, we investigate CPUs that have hardware-based
Meltdown mitigations. We analyze these fixes and develop the hypothesis
that they only prevent the data from being used in subsequent operations,
not the actual load. We confirm this hypothesis by showing that the
fixes introduce new side effects, namely that on illegal accesses to kernel
addresses, the CPU zeroes out the data but still performs the load. In
contrast, loads from non-present pages stall the CPU. We present a
method based on Flush+Reload [96] to distinguish the stalling behavior of
loads. With this method, we can exploit the side effects of the Meltdown
mitigations to break KASLR reliably. By probing the kernel space for load
stalls, we detect whether the probed virtual address is physically backed,
revealing the location of the kernel. We demonstrate that these effects
can also be exploited on older CPUs, which are affected by Meltdown but
protected by software mitigations.

Our KASLR break, EchoLoad, works on all major OSs (Linux, Win-
dows, macOS, and Android x86 64). We tested the KASLR break on
Intel microarchitectures from Arrandale (2010) to Cascade Lake (2019)
on Atom, Core, and Xeon CPUs. Even on Cascade Lake with fixes for
Meltdown and MDS [37], we de-randomize the kernel in 40 µs (F-score
1, n = 10

9
). Hence, our KASLR break is the fastest and most reliable

one published. Moreover, EchoLoad is the only KASLR break that only
relies on memory loads and works on Intel microarchitectures since at
least 2010. EchoLoad even works on KPTI, the Linux software mitigation
for Meltdown.

As EchoLoad does not require anything but memory loads, it works in
restricted environments such as SGX and JavaScript. We highlight that
EchoLoad can aid kernel exploitation from within SGX enclaves, facili-
tating SGX malware [82, 83]. In contrast to previous ASLR breaks from
JavaScript [7, 28, 77], we are the first to demonstrate a microarchitectural
KASLR break from JavaScript on x86 OSs. We also show that on older
unpatched x86 OSs, Meltdown can even be exploited from JavaScript.
This is particularly dangerous for any Windows XP machines (1–3% of
Desktop computers [68]), for which no software patches are available,
but which are still running in official, commercial, industrial, or personal
environments. Our attack will also soon be possible on unprotected 64-bit
systems as WebAssembly plans to extend the size of linear memory indices
to 64 b [91]. We pinpoint the remaining challenges for widely deployable
JavaScript-based Meltdown exploits.

To mitigate all microarchitectural attacks on KASLR, including Echo-
Load, we present FLARE (Fake Load Address REsponse). The basic idea

1. Introduction 135

is to back the entire kernel address space with physical pages. FLARE
prevents previous attacks [10, 32, 36, 49, 77] by hiding the kernel within
a virtual-address range appearing to be valid. Our proof-of-concept im-
plementation has a memory overhead of only 12 kB, and no measurable
runtime overhead.

FLARE is compatible with KPTI on Meltdown-affected CPUs, and
forms a low-cost mitigation on CPUs with hardware fixes. We evaluated
our open-source proof-of-concept implementation of FLARE

1
for Linux

for both cases. Our results show that FLARE indeed prevents all known
microarchitectural attacks on KASLR.

We conclude that while the hardware mitigation for Meltdown fixes the
problem of Meltdown-US [9], they introduce a new side effect by merely
zeroing out data that is illegally accessed, enabling EchoLoad. Based on
our analysis of the behavior of AMD and ARM CPUs, we believe that
the only complete solution for Meltdown is to treat inaccessible pages the
same way as unmapped pages. Furthermore, the software-based isolation
of user and kernel space [30] is not sufficient, and we thus suggest to
deploy FLARE to prevent microarchitectural attacks on the kernel.

Contributions. The contributions of this work are:
1. We analyze Meltdown hardware fixes on Intel CPUs and discover a

Meltdown-related effect on Meltdown-fixed Intel CPUs.

2. We present KASLR and ASLR breaks, even from SGX and including
the first KASLR break from JavaScript.

3. We show a JavaScript Meltdown attack on 32-bit x86.

4. We propose FLARE, a mitigation preventing currently known microar-
chitectural attacks on KASLR with negligible overhead.

Outline. Section 2 provides background on ASLR and attacks on
ASLR. We analyze Meltdown hardware fixes in Section 3. Section 4
presents our new mitigation for microarchitectural KASLR breaks. Section
5 evaluates FLARE’s performance and efficacy against attacks. Section 6
discusses related work. Section 7 concludes.

Responsible Disclosure. We responsibly disclosed our findings to Intel
on August 5, 2019, and Intel acknowledged them.

1
https://github.com/IAIK/FLARE

https://github.com/IAIK/FLARE

136 Chapter 6. KASLR: Break It, Fix It, Repeat

2 Background

In this section, we provide the background on caches, transient execution
and transient-execution attacks, virtual memory, Intel SGX, and address
space layout randomization (ASLR).

2.1 Cache Attacks

Caches were designed to hide the latency of memory accesses, creating
a timing side channel. Over the past two decades, many different attack
techniques have been proposed [5, 31, 54, 69, 96]. Two of these attacks are
Prime+Probe [69, 71] and Flush+Reload [96]. In a Prime+Probe attack,
an attacker constantly measures how long it takes to fill a cache set with
the same set of data. Whenever a victim accesses a cache line mapping
to the same cache set, the attacker will measure a higher runtime for the
filling. In a Flush+Reload attack, an attacker constantly flushes a cache
line and reloads the data. By measuring how long the reload takes, the
attacker can infer whether a victim has accessed the data in the meantime.
As Flush+Reload exhibits low noise and has a fine granularity, it has been
used for attacks on user input [33, 58, 79], cryptographic algorithms [4,
46, 96], and web server function calls [97].

Side channels can also be used to build covert channels. In a covert
channel, the attacker controls both the sender and receiver. The goal is
then to leak information from one security domain to another, bypassing
isolation on both the functional and system level. Both Prime+Probe and
Flush+Reload have been used in high-performance covert channels [31,
60, 62].

2.2 Transient-execution Attacks

Another optimization is out-of-order execution, avoiding CPU stalls when
in-order instructions wait for operands. Instructions are decoded into
micro-operations (µOPs) [21] and placed in the Re-Order Buffer (ROB),
along with their operands. While waiting for operands, µOPs whose
operands are already available are scheduled in the meantime. Results of
the out-of-order executed instructions are stored until they can be retired.

Modern software is rarely linear but contains branches. To avoid
pipeline stalls upon unresolved branch conditions, modern CPUs imple-
ment speculative execution, predicting the most likely outcome of the
branch and starting execution along the predicted path. The results are
again placed in the ROB until retirement, i.e., the prediction has been

2. Background 137

verified. If the prediction was correct, a significant speedup is achieved.
Otherwise, the CPU has to revert all results and needs to flush the pipeline
and the ROB. Unfortunately, microarchitectural state changes, such as
loading data into the cache or TLB, are not reverted. This allows an
attacker to use microarchitectural covert channels to exfiltrate the secret
data. Speculative or out-of-order executed instructions that were never
committed to the architectural state are also referred to as transient
instructions [9, 53, 59]. Spectre-type attacks exploit transient execution
before a misprediction is discovered [9, 35, 51, 53, 55, 61]. Meltdown-type
attacks exploit transient execution before a fault or interrupt is handled [3,
9, 10, 40, 42, 51, 59, 74, 80, 86, 88, 93].

Meltdown. Meltdown exploited lazy exception handling in modern
CPUs [59]. The attacker triggers a page fault but suppresses it via fault
handling, TSX transactions, or misspeculation. While the CPU knows
that the access is not allowed, the exception is only raised at the retirement
stage. Hence, dependent instructions receive the data and can then, e.g.,
encode the value in the cache which the attacker can leak using a technique
like Flush+Reload.

2.3 Intel SGX

In recent years, software vendors discovered that specific security prop-
erties, e.g., for DRM, in theory, are much easier to achieve with trusted-
execution mechanisms. Consequently, hardware vendors reacted and
developed different trusted-execution environments [1, 39, 50]. Intel de-
veloped an instruction-set extension called Software Guard Extension
(SGX) [39]. With SGX, an application is split into a trusted and an
untrusted part. To protect the former, it is executed within a hardware-
backed enclave. In the SGX threat model, neither the OS nor any other
application is trusted. Therefore, the CPU guarantees that any memory
belonging to the enclave cannot be accessed by anyone else than the
enclave. The SGX threat model also allows the remaining hardware to be
malicious or compromised. Consequently, the SGX memory is encrypted,
protecting it from being directly read from the DRAM module. Additional
threats like memory-safety violations [56], side channels [8, 83], or race
conditions [78, 92] are considered out of scope and remain an enclave
developer’s responsibility.

The SGX interface to let the untrusted part enter an enclave con-
ceptually resembles system calls. Once the trusted execution is finished,

138 Chapter 6. KASLR: Break It, Fix It, Repeat

the result of its computation as well as the control flow is returned to
the callee. However, SGX protection mechanisms are one-sided: SGX
allows data sharing between the trusted and the untrusted part by giving
enclaves full access to the entire host application’s address space. Recently,
it has been shown that this asymmetric protection gives rise to enclave
malware [82].

2.4 Address Translation

Modern OSs rely on memory isolation for security purposes. Hence, CPUs
support virtual memory for abstraction and memory isolation. Processes
work on virtual addresses and cannot architecturally interfere with each
other as the virtual address spaces are non-overlapping and overlapping
areas are protected according to the processes’ requirements. These virtual
addresses have to be translated to physical addresses using multi-level page
tables. A dedicated translation-table register indicates the location of the
first-level table, e.g., CR3 on Intel architectures. Upon a context switch,
the OS updates the translation-table register with the physical address of
the first-level page table of the process scheduled next. Page-table entries
do not only provide translations but also define properties of memory
regions, e.g., executable or not.

2.5 Address Space Layout Randomization

Since the introduction of non-executable (NX) bits, memory corruption
attacks have to rely on existing code in the victim process instead of
code injection [87]. Shacham et al. [84] generalized the concept of code-
reuse attacks, which is now widely known as return-oriented programming
(ROP). Subsequently, a variety of code-reuse attack techniques have been
described [6, 12, 13, 27, 76].

Code-reuse attacks require knowing addresses of specific code snippets.
Similarly, data-only attacks [11, 47] require knowledge of addresses, e.g.,
of specific data structures. Over the years, many different mitigation
techniques have been developed [87], e.g., NX stacks, stack canaries, and
ASLR. The idea behind ASLR is to make the addresses of code and data
unknown to an attacker by randomizing them. Typically, ASLR random-
izes the base address of the executable, stack, heap, and shared libraries.
Hence, even if an attacker hijacks the control flow, it is significantly harder
to exploit bugs in an application as the location of code snippets usable for
code-reuse attacks is unknown. By brute-forcing the location, the chances
are high that the process will crash, and any ongoing attack is unsuccessful.

2. Background 139

Furthermore, an application is re-randomized on every startup, reducing
the chances of a successful attack.

General Idea of KASLR. While ASLR initially only protected user-
space applications, the kernel space was later on also protected by
KASLR [19, 49], e.g., introduced in Windows in 2007 [49], macOS in
2012 [2], and Linux in 2014 [19]. The kernel consists of multiple seg-
ments that are individually mapped into the kernel address space. These
segments include the code (i.e., text segment), drivers or modules, and
data (e.g., stack, heap). The KASLR implementations of the three major
OSs (Linux, Windows, macOS) only use coarse-grained randomization,
i.e., randomized base address. Fine-grained KASLR implementations
using code diversification have been proposed [26, 72] but are not used in
practice.

Another property of KASLR implementations is that the kernel
is mapped using either 4 kB or 2 MB pages. The mapping is 2 MB-
aligned [77], reducing the number of possible offsets. Moreover, the
order of the randomized segments is not changed, e.g., in Linux, the text
segment always has a lower address than the modules [57]. Consequently,
KASLR provides a lower entropy than typical user-space ASLR imple-
mentations [19]. However, if an exploit attempt fails, it likely crashes the
kernel. Hence, an attacker only has one shot, and exploitation techniques
relying on a large number of retries cannot be used against the kernel if
KASLR is active.

Linux. In Linux 5.x, most sections are independently randomized at
boot, including the direct-physical map, vmalloc and ioremap space
(vmalloc area), virtual-memory map (vmemmap), text segment, and mod-
ules [23]. The text segment is mapped between 0xffff ffff 8000 0000

and 0xffff ffff c000 0000 with a maximum size of 1 GB [77]. As the
kernel has to be aligned to a 2 MB boundary, the randomization has 9
bits of entropy. Therefore, the kernel is placed at one of 512 possible
offsets. Modules are mapped using 4 kB pages in a 1 GB range following
the text segment. Unmapped pages follow each module before a new
module starts [49].

Start and end addresses for the direct-physical map, the vmalloc area,
and the vmemmap are documented [57], but analyzing the start addresses
on repeated restarts shows that they are only correct if KASLR is disabled.
Therefore, we analyzed the KASLR implementation of Linux kernel version
5.2.9. This analysis showed that the possible start address is indeed

140 Chapter 6. KASLR: Break It, Fix It, Repeat

0xffff 8880 0000 0000 for the direct-physical map. It is then placed at a
random offset from the start address, aligned to a 1 GB boundary. The
vmalloc space is placed at a random offset relative to the end of the
direct-physical map with at least 1 GB between them. The vmemmap
area is then randomized starting from the end of the vmalloc area, again
with at least 1 GB between them. The range of possible addresses is,
therefore, from 0xffff 8880 0000 0000 to 0xffff fdff ffff ffff, always
with a 1 GB alignment and the preserved order.

Windows. Windows randomizes almost everything except the HAL
heap once at boot [44]. Windows first introduced KASLR with Vista [49]
and improved it over time [32]. Windows 7 maps the kernel, followed by
the drivers in the same range with the same randomization. The address
range of the kernel and drivers is 0xffff f800 0000 0000 to 0xffff f803

ffff ffff [49]. KASLR on Windows 10 differs from Windows 7 as there
is a separate area for the kernel and drivers. The kernel is still mapped in
the same virtual address range, but drivers are now mapped in the range
of 0xffff f800 0000 0000 to 0xffff f80f ffff ffff [22]. The kernel is
also 2 MB-aligned, resulting in 8192 possible offsets. Drivers are mapped
with 4 kB pages with a 16 kB alignment.

macOS. Starting with macOS 10.8 (Mountain Lion), the kernel, kexts
(kernel modules), and zones are randomized [70]. For instance, the kernel
is mapped in the range of 0xffff ff80 0000 0000 to 0xffff ff80 2000

0000 with a 2 MB alignment, resulting in 256 possible offsets. The offset
at which the kernel is placed relative to the start of the address range is
called kslide. According to Chen and He [14], kernel and kexts share the
same kslide.

3 A Novel (K)ASLR Break

In this section, we first analyze the Meltdown hardware mitigation on
new Intel CPUs. We then introduce EchoLoad, an attack primitive that
exploits incomplete Meltdown countermeasures to break KASLR. We
detail how we can use it to break KASLR from an unprivileged user-space
application, JavaScript, and SGX.

3. A Novel (K)ASLR Break 141

3.1 Analyzing the Meltdown Mitigation

The Meltdown vulnerability allowed unprivileged users to leak kernel
memory (cf. Section 2.2). The immediate workaround was KAISER [30],
a software-only solution to unmap the kernel when running in user space.
With the Whiskey Lake microarchitecture, Intel fixed the vulnerability in
hardware without providing further details on how their fix works. CPUs
with the hardware mitigation indicate that they are not vulnerable by
having the RDCL NO bit set in the IA32 ARCH CAPABILITIES model-specific
register [39].

Lipp et al. [59] argued that stalling the CPU until the permission
check is done might be too costly. We suspect that such a change also
requires redesigning a significant part of the CPU’s pipeline. As the first
CPUs with hardware mitigations already shipped approximately one and
a half years after Meltdown was disclosed to Intel, we expect only minor
hardware changes as mitigation.

Hypothesis. We hypothesize that instead of stalling on an illegal mem-
ory load, the CPU zeroes out the result. Hence, the CPU still loads
inaccessible memory locations, but instead of providing the real value to
dependent instructions, it always provides ‘0’.

Verification. We get the first indication that our hypothesis is correct
by simply mounting a Meltdown attack. When running the Meltdown
attack on a Xeon Silver 4208 CPU which has the RDCL NO bit set, we
always get ‘0’s. To verify our hypothesis, we further analyzed performance
counters on three different systems: a Meltdown-vulnerable Intel CPU (i7-
8650U), an Intel CPU with hardware mitigations (Xeon Silver 4208), and
a non-affected AMD CPU (Ryzen Threadripper 1920X). For all systems,
we evaluate performance counters when executing the following code
10

4
times: if (transient_begin()) { *(volatile char*)0; oracle[*address];

}. The function transient begin either starts a TSX transaction if
available, or sets up a signal handler for segmentation faults [59]. The
null-pointer access is required to always cause an exception.

The first performance counter of interest is the number of CPU stalls
when executing the above code. On Intel CPUs, we use CYCLE ACTIVITY

.STALLS MEM ANY, and on AMD CPUs the “Dispatch Stalls” counter. We
set address to a valid kernel address. As baselines, we choose a mapped
user address as well as a non-present address for address. Figure 6.1
shows the results of the performance counters for all 3 systems. For

142 Chapter 6. KASLR: Break It, Fix It, Repeat

Vulnerable Mitigated Unaffected
0%

50%

100% 80 82 9080 82
100100 100 100

user kernel not present

Figure 6.1: Loads from non-present pages always stall, loads to kernel addresses
stall on unaffected AMD CPUs.

without mitigations with mitigations
0
2
4
6
8
⋅10

4

60
,0

66

60
,0

42

60
,0

60

60
,0

37

90
,0

07

75
,0

20

user kernel not present

Figure 6.2: Issued load µOPs for user and kernel addresses (Intel). Only invalid
loads from non-present pages are reissued.

comparison, we normalized the values such that the highest value on each
system represents 100 %.

All CPUs stall when accessing a non-present virtual address. The
AMD CPU also stalls when accessing a kernel address. Both Intel CPUs
with and without mitigations show the same stall behavior. Hence, even
the Intel CPUs with Meltdown mitigations do not stall when accessing a
kernel address. This indicates that the memory load for the kernel address
is actually issued.

We substantiate this observation by analyzing another performance
counter. With the counters UOPS DISPATCHED PORT.PORT 2 and UOPS

DISPATCHED PORT.PORT 3, we can track the number of µOPs issued on
the load ports. The sum of these two counters is the number of all memory
loads. Figure 6.2 shows the number of memory loads when running the
code mentioned above with a user-space, kernel-space, and non-present
address both on an Intel CPU with and without hardware mitigation.
When trying to load from a non-present page, the load faults and the

3. A Novel (K)ASLR Break 143

without mitigations with mitigations
0

100

200
211

90

206

92
0 0

user kernel not present

Figure 6.3: Number of cycles L1D cache misses are pending. User and kernel
addresses reach the memory hierarchy, non-present pages do not.

0xffff ffff8 0000 000

stalls

kernel

0

0xffff ffff c000 0000

stalls

Figure 6.4: Reading addresses not physically backed stalls the CPU, while
kernel addresses return ‘0’ (or the actual data).

load instruction is re-issued [80]. The number of issued loads for kernel
addresses is the same as for user-space addresses on both CPUs. This
indicates that these loads succeed and do not have to be re-issued.

Finally, we show that the issued loads for kernel addresses indeed load
data from the memory hierarchy, and not, e.g., from an internal buffer
containing ‘0’. Thus, we monitor the number of cycles that L1 data-cache
misses are waiting to be retrieved. Figure 6.3 shows the values of the
performance counter L1D PEND MISS.PENDING CYCLES for the previously
shown code. While non-present pages do not cause an L1 miss, both
user-space and kernel addresses cause L1 misses. This is even the case for
CPUs with hardware mitigations against Meltdown, showing that loads
to kernel addresses retrieve the actual value, and only later on zero it out.

3.2 Breaking KASLR

EchoLoad is a new microarchitectural KASLR attack exploiting Meltdown-
related side effects. EchoLoad reliably breaks KASLR, regardless of OS,
software mitigations, and microcode updates. EchoLoad works on all Intel
CPUs since 2010, even if they are not affected by Meltdown, e.g., CPUs
with the RDCL NO bit. In contrast to the KASLR break by Schwarz et al.
[77], EchoLoad also works on the new Cascade Lake, which is not affected
by Meltdown or MDS.

144 Chapter 6. KASLR: Break It, Fix It, Repeat

1 i f (t r a n s i e n t b e g i n ()) {
2 ∗(volat i le char∗) (mem + ∗ address) ;
3 }
4 i f (f l u s h r e l o a d (mem)) return ADDRESS MAPPED;
5 else return ADDRESS NOT MAPPED;

Listing 3.1: The main part of EchoLoad. The address mem is only cached if the
access to address does not stall.

General Idea. The general idea is to distinguish whether accessing
a kernel address in the transient-execution domain leads to a stall. We
exploit the fact that instructions can only be executed out of order if
their data dependencies are fulfilled. Hence, we dereference a user-space
memory location where the address is computed based on the value of the
kernel address that is being tested.

Listing 3.1 shows this central part of EchoLoad. First, an attacker
induces transient execution by provoking a fault or a misspeculation in
Section 3.2. If the access to address in Section 3.2 stalls, the user address
cannot be computed before the transient execution aborts. Otherwise,
the user address is dereferenced and, thus, cached before the transient
execution aborts. After the transient execution, the attacker probes the
user- address in Section 3.2, e.g., using Flush+Reload. If the user address
is cached, address is valid, i.e., physically backed. Otherwise, address is
not valid, i.e., not physically backed. Figure 6.4 illustrates the general
idea of EchoLoad.

CPUs with Meltdown Fixes. To break KASLR on CPUs with Melt-
down fixes, we run EchoLoad on all 512 possible kernel offsets (cf. Section
2.5). Only where a physical page backs the tested address, we read 0, on
other addresses the CPU stalls.

As the CPU stalls on all reads from addresses that the kernel is not
mapped to, we observe no false positives. This makes EchoLoad a very
reliable attack that even works on Cascade Lake CPUs.

CPUs without Meltdown Fixes. On CPUs without Meltdown fixes,
we cannot rely on the CPU returning 0 for reads on kernel pages. Instead,
if KPTI is disabled, we read the actual content of the page. As the
content of the page is code, there are 256 possible addresses which could
be dereferenced.

As the 256 possible addresses are contiguous, and the cache line size is
typically 64 byte, they fall into one out of 4 possible cache lines. Testing 4

3. A Novel (K)ASLR Break 145

adjacent cache lines with Flush+Reload triggers the stride prefetcher [38]
on Intel CPUs. Instead, we can exploit the L2 adjacent cache line prefetcher
(spatial prefetcher) [38], which fetches the sibling cache line whenever
a cache miss is handled. Hence, we only have to check 2 cache lines
using Flush+Reload, which works without triggering the stride prefetcher.
Consider a case with 4 adjacent cache lines. If the data we read falls
into line 0 and we check line 1, we observe a hit on line 1 because the
prefetcher also loads it into the cache. The same is true if the data falls
into line 3, and we check line 4. By merely checking cache lines 1 and 3,
we detect all possible accesses.

We can even further increase the performance by only checking one
cache line. By using a kernel module, we investigated the beginning of
the kernel text segment and determined that it is always the same across
kernel versions (i.e., 0x48).

EchoLoad also works with KPTI [29] as the pages still mapped with
KPTI use the same randomization offset as the rest of the kernel code.
While the value differs with KPTI (i.e., 0xf), it is still the same across
kernel versions that use it. As we only look for the beginning of the
kernel and we know that the value remains constant, we can reduce the
number of cache lines we need to check to 1. This further improves the
performance of our KASLR break.

EchoLoad and LVI-NULL. On CPUs that have already received fixes
for Meltdown, EchoLoad is the inverse of the LVI-NULL attack [89]. While
LVI-NULL abuses the fixes to inject a dummy value of zero to dependent
transient instructions in a victim, EchoLoad exploits the inverse effect,
i.e., the retrieving of a zero value, to break KASLR.

146 Chapter 6. KASLR: Break It, Fix It, Repeat

Table 6.1: Environments where we evaluated EchoLoad and Data Bounce
(KPTI disabled).

CPU µarch. EchoLoad Data Bounce

Intel Atom x5-Z8300 Cherry Trail 3 3

Intel Core i5-450M Arrandale 3 3

Intel Core i5-3230M Ivy Bridge 3 3

Intel Core i5-8250U Kaby Lake R 3 3

Intel Core i7-4790 Haswell 3 3

Intel Core i7-6700K Skylake 3 3

Intel Core i7-8650U Kaby Lake R 3 3

Intel Core i7-8565U Whiskey Lake 3 3

Intel Core i9-9900K Coffee Lake 3 3

Intel Xeon E5-1630 v4 Broadwell 3 3

Intel Xeon Silver 4208 Cascade Lake 3 8

Intel Cascade Lake (Google Cloud) Cascade Lake 3 8

AMD Ryzen Threadripper 1920X Zen 8 8

AMD Ryzen 7 3700 Zen 2 8 8

ARM Cortex-A57 A57 8 8

Evaluation. We evaluated EchoLoad on different Intel microarchitec-
tures running Linux (cf. Table 6.1). On all CPUs, we evaluated our
attack with both KPTI enabled and disabled. These experiments show
that KPTI does not prevent EchoLoad. If KPTI is disabled, Echo-
Load detects the symbol startup 64. With KPTI, it detects the symbol
entry text start, which is the trampoline required to enter the kernel.

As Android is based on the Linux kernel, the behavior on Android is
the same. While we evaluate the ability and performance of EchoLoad
to leak the kernel code offset, it can equally leak the offsets of all other
randomized parts of the kernel.

For the performance evaluation, we used the same setup that
Schwarz et al. [77] describe in their paper. We tested 10 different ran-
domizations (i.e., 10 reboots), each 100 times. Using this approach, we
have a sample size of 10

3
. We evaluated the performance on a selected

number of architectures in all three cases, namely misspeculation, TSX,
and segfault handling. Table 6.2 shows the result of this evaluation. In
all tested cases, we achieve almost perfect accuracy. On the i9-9900K, we
outperform Data Bounce in terms of time required while matching the
accuracy.

Similar to Schwarz et al. [77], we tested EchoLoad with TSX on a
larger scale. For that, we tested the same offset 100 million times and
repeated the experiment 10 times for a total of 1 billion tries. On all three

3. A Novel (K)ASLR Break 147

Table 6.2: Performance of EchoLoad in terms of runtime and F-score. Each
possible offset is tested a single time.

CPU Speculation TSX Segfault

i7-6700K Time (F-Score) 63 µs (0.999) 48 µs (1.000) 133 µs (1.000)
i9-9900K Time (F-Score) 33 µs (1.000) 29 µs (1.000) 86 µs (1.000)
Xeon Silver 4208 Time (F-Score) 51 µs (0.994) 40 µs (1.000) 127 µs (1.000)

CPUs (cf. Table 6.2, we achieved an average F-score of 1, giving us perfect
accuracy in detecting the KASLR offset.

On Windows 10, we also tested 10 different randomizations (i.e., 10
reboots), each 100 times. In all cases, we successfully found the location
of the kernel image. On macOS 10.11.6, instead of 10 randomizations, we
repeated the experiment 100 times to verify that the given kernel range is
still correct [14]. We then successfully recovered the kernel location in all
100 randomizations.

3.3 Breaking (K)ASLR from SGX

As EchoLoad only requires memory accesses, it also works in restricted
environments. We demonstrate EchoLoad in SGX enclaves breaking host
ASLR, victim-enclave ASLR, and KASLR.

While it is also possible to use EchoLoad for detecting the location
of SGX enclaves from the host application, this is an artificial scenario.
First, the host maps the enclave to its location and, thus, knows where the
enclave is. Second, on Linux, the host can access this information from
the pseudo file /proc/self/maps, containing all virtual-address mappings
of the current process. Finally, the host can also probe the virtual memory
for the enclave, e.g., using a signal handler to catch segmentation faults.
If a region returns 0xff, it is likely to be an EPC page of an enclave.

EchoLoad from Enclave to Host. TAP is a method to break host
ASLR from an enclave using Intel TSX [82]. It allows scanning the host
address space for mapped pages to mount a ROP attack from inside the
enclave, impersonating the host application.

While TAP only worked for CPUs with TSX, it does not work on CPUs
with MDS fixes in microcode at all. With the microcode update, all TSX
transactions abort immediately when started inside an SGX enclave [41].
We further analyzed whether the transaction aborts immediately, or is
only rolled back in all cases.

148 Chapter 6. KASLR: Break It, Fix It, Repeat

1 if(xbegin () == (~0u)) { *(volatile char*)mem;

xend(); }

2 if(flush_reload(mem)) return ROLL_BACK;

3 else return IMMEDIATE_ABORT;

Listing 3.2: Analyzing the behavior of the TSX abort. If the transaction is
aborted on xbegin, mem cannot be cached. If the transaction is
just rolled back on xend, mem is cached.

Listing 3.2 shows the code we use to analyze the TSX-transaction
aborts. If the transaction aborts already at the xbegin instruction, the
memory dereference is never executed. If the transaction executes but
then rolls back the executed instructions, the dereference of the address
still causes the memory location to be in the cache.

Our results show that the transaction is never started as the address mem
is never cached after the transaction. Hence, we cannot even use TSX to
access memory locations transiently. We observe the same behavior outside
an SGX enclave when setting the TSX FORCE ABORT MSR to 1. While this
MSR is documented to abort every TSX transaction on commit [98], we
verified with our test (Listing 3.2) that the transaction is not even started.

Consequently, even if TSX is re-enabled in SGX via a microcode
update, it can be manually disabled with the TSX FORCE ABORT MSR to
protect against attacks such as TAP. This is the case on the Amazon
EC2 cloud [80]. In contrast to Data Bounce [77], EchoLoad works on the
newest CPU generation, as it does not require TSX. Thus, EchoLoad can
be used to mount SGX ROP attacks [82] even if TSX is disabled, once
more enabling such attacks.

Due to the unavailability of syscalls and the rdtsc instruction inside
SGX, we mount EchoLoad behind a misspeculated branch and use a
counting thread [83] as a timer. We achieve a speed of 388 Mb/s for
scanning the host address space with EchoLoad. Hence, EchoLoad is a
viable alternative to TAP to de-randomize the host application from an
SGX enclave.

EchoLoad from Enclave to Enclave. Enclaves might not only want
to de-randomize the host application but also learn information about
other enclaves. While enclaves are mutually untrusted and, thus, cannot
access each other, EchoLoad can be used to learn the address-space layout
of other enclaves. Moreover, assuming that enclaves have unique sizes,
an enclave can even detect which other enclaves are used by the host by
detecting their size.

3. A Novel (K)ASLR Break 149

We evaluated EchoLoad in the cross-enclave scenario by loading two
enclaves in our test application. One enclave is malicious and leverages
EchoLoad to learn which other enclaves are used by the host application.
We use the same experiment as for de-randomizing the host to scan the
address space for other enclaves. We successfully detect the location and
the size of the second enclave used by the host application. The speed
for scanning the address space is the same as for de-randomizing the host
application.

EchoLoad from Enclave to Kernel. Enclaves may foster stealthy
exploits [48, 65, 82, 83]. In this work, we add another primitive to malware
hidden inside SGX. With EchoLoad, an enclave can de-randomize KASLR,
which is a prerequisite for many kernel exploits.

The same code which is used to de-randomize the host application can
be used to de-randomize the kernel. We evaluated EchoLoad inside an SGX
enclave to find the KASLR offset. Due to the use of misspeculation and a
timing thread, the performance is worse than in native code. However,
we still detect the KASLR offset with an F-score of 1 (n = 10

3
).

3.4 Meltdown and KASLR Break in JavaScript

EchoLoad can even be mounted from a JavaScript sandbox. We demon-
strate EchoLoad, and as an extension Meltdown, from the Spidermonkey
JavaScript engine 60.1.3 used in Firefox.

There are two challenges for mounting EchoLoad in JavaScript. First,
both JavaScript and WebAssembly currently only support a 32-bit linear
memory index, restricting arrays to 4 GB [43]. While this prevents Echo-
Load on a 64-bit OS, it does not prevent it on 32-bit OSs, which only
support a 32-bit virtual address space. Hence, we evaluate this attack
on Ubuntu 16.04 (Kernel 4.15.0-60) i686 on an Intel i7-4790. While we
are currently limited to 32-bit systems, the WebAssembly developers are
planning to increase the size of linear memory indices from 32-bit to 64-bit,
allowing the attack on all commodity systems that are not patched against
Meltdown [91]. Second, the Spectre mitigations do not only reduce the res-
olution of the high-resolution timer [67], but also harden the bounds check
for arrays, preventing speculative out-of-bounds accesses by default [66].
As our focus is not demonstrating a Spectre attack but a Meltdown-related
effect, we use a version of the engine that allows speculative out-of-bounds
accesses, as in previous work [53]. To develop widely deployable Meltdown
and EchoLoad exploits, further research is necessary to investigate whether

150 Chapter 6. KASLR: Break It, Fix It, Repeat

other misprediction mechanisms may provide a suitable workaround to
the hardened out-of-bounds checks. Note that previous work has already
shown that some of these mitigations can be circumvented [34].

Building Blocks. An alternative to the high-resolution timer is a
counting thread which is commonly used for microarchitectural attacks
in JavaScript [28, 53, 81]. Furthermore, as the clflush instruction is
not available in JavaScript, we resort to Evict+Reload as described in
related work [28, 77, 90]. Instead of measuring only one address in our
Evict+Reload, we use amplification on multiple cache lines [63]. With
amplification, we encode the out-of-bounds access into multiple different
cache lines to achieve more reliable results. To access a kernel address
during transient execution, we hide an out-of-bounds array access behind
a misspeculated branch.

EchoLoad from JavaScript. By combining the building blocks, we
can implement EchoLoad in JavaScript. On average, it takes 25.09 ms
(n = 10

3
, σx̄ = 5.92) to find the start of the kernel image. The detected

offset is relative to the base of the array, which is used for the out-of-
bounds accesses. However, an attacker can leverage any JavaScript ASLR
break [28] to recover the array base address, and from that compute the
absolute address of the kernel image.

Meltdown from JavaScript. Contrary to Linux, many 32-bit OSs
still in use do not have Meltdown patches (e.g., Windows XP). Hence,
we show that with the building blocks, we can mount a Meltdown attack
from JavaScript on such systems. Relying on EchoLoad for the KASLR
break, we can even target specific locations in the kernel.

To evaluate the attack performance of the proof of concept, we disable
KPTI and leak a known value from the kernel. Our JavaScript attack
leaks 2 B/s, with an error rate of 0.3 % (n = 10

3
).

3.5 Other Side-Channel Attacks on KASLR

Microarchitectural attacks on KASLR so far relied on either branch-
predictor states [20], address-translation caches [32, 36, 49], or store-buffer
optimizations [10, 77]. We compare EchoLoad to previous attacks on
KASLR [20, 32, 36, 49, 77].

Our attack outperforms all state-of-the-art KASLR breaks on Intel x86
CPUs (cf. Table 6.3). We outperform Data Bounce [77] in terms of speed

3. A Novel (K)ASLR Break 151

Table 6.3: We compare microarchitectural attacks on KASLR. EchoLoad out-
performs all previous microarchitectural attacks on KASLR while
having no requirements.

Attack Time Accuracy Requirements

Hund et al. [36] 17 s 96 % -
Gruss et al. [32] 500 s N/A cache eviction
Jang et al. [49] 5 ms 100 % Intel TSX
Evtyushkin et al. [20] 60 ms N/A BTB reverse engineering
Canella et al. [10] 0.27 s 100 % MDS vulnerable CPU
Schwarz et al. [77] 42 µs 100 % Intel CPU before Cascade Lake
EchoLoad (our attack) 29 µs 100 % -

and match it in accuracy while having lower requirements. Similar to Data
Bounce, EchoLoad also has the advantage over previous microarchitectural
attacks that it does not require Intel TSX, or knowledge of internal data
structures like the branch-target buffer (BTB) or the store buffer.

For instance, Evtyushkin et al. [20] assume an attacker knows how
the BTB works internally, which has not yet been reverse-engineered for
microarchitectures after Haswell. Moreover, with the widely-deployed
Spectre mitigations [9, 40], the BTB is either cleared on context switch or
not shared between privilege levels. Hence, this attack does not work on
state-of-the-art CPUs anymore.

The double page-fault attack [36] was the first microarchitectural
attack on KASLR. By accessing a kernel memory location, an attacker
first triggers a page fault. This triggers an interrupt which is handled
by the OS. After handling the interrupt, the OS returns control to a
pre-installed error handler in the user-space program. In the error handler,
the attacker measures the time it took to handle the fault. The attacker
then repeats the attack step, again measuring the time it took to handle
the fault. If the kernel address is valid, the first illegal access has created
a TLB entry. This speeds up the handling of the second fault, creating a
timing side channel. Consequently, a user-space attacker can infer whether
a kernel address is valid or not. The requirement for this attack is that
the user can install a signal handler to handle segmentation faults. Hence,
native code execution is required.

Jang et al. [49] retrofitted the attack by Hund et al. [36] with Intel TSX.
TSX is an x86 instruction-set extension introducing hardware transactional
memory. If a page fault occurs within a transaction, it is aborted without
architecturally raising a fault and, hence, without any OS interaction. This
allows the attack to skip the page fault handling of the OS, significantly

152 Chapter 6. KASLR: Break It, Fix It, Repeat

speeding up the attack and reducing its noise. The approach by Jang et al.
[49] only works on CPUs starting from Haswell as it relies on Intel TSX.
This extension is not present on low-end CPUs or any CPUs built before
2013 and can be disabled on newer CPUs as well. Intel TSX is, for example,
disabled on the Amazon EC2 cloud [80].

Gruss et al. [32] use the software prefetch instruction as a side channel.
This side channel exploits that the execution time of the prefetch instruc-
tion depends on whether the translation cache holds the correct entry.
As the TLB can only hold addresses for which a valid translation, i.e., a
physical page is mapped to it, the location of the kernel is revealed due
to it consisting of the only valid address mapping within the predefined
region. With this attack, the attacker additionally learns the page size
that is used for the mapping.

Fallout [10] demonstrates a KASLR break on MDS-vulnerable Intel
CPUs. First, they ensure that a user-controlled value is in the store
buffer. Then, they attempt to access an address with the same page
offset ,which is inaccessible. On MDS-vulnerable CPUs, the store-buffer
content is transiently forwarded to faulting loads on valid kernel addresses,
revealing the location of the kernel. Fallout [10] relies on the opportunistic
store-buffer behavior that virtual addresses are likely equivalent if the
least-significant 12 bits match. However, this is only the case on MDS-
vulnerable Intel CPUs that are not patched. Hence, this KASLR break
does not work on CPUs indicating that they are MDS-resistant via the
MDS NO flag in the IA32 ARCH CAPABILITIES model-specific register, e.g.,
on the newest Cascade Lake CPUs.

Data Bounce [77] breaks KASLR by exploiting that the CPU only
performs store-to-load forwarding if a physical page backs a virtual address,
i.e., the virtual address can be resolved to a physical address. Using this
approach, they can break KASLR on all Intel CPUs going back to 2004.
They claim that the attack has perfect accuracy and only requires 42 µs to
detect the correct kernel location. One of the advantages of this approach
over Jang et al. [49] is that it does not require TSX and, hence, is
applicable to a broader range of CPUs. However, the behavior of store-to-
load forwarding was changed in Cascade Lake CPUs to prevent this attack
(cf. Table 6.1). Hence, while their approach works on microarchitectures
starting from the Pentium 4 Prescott to Whiskey Lake and Coffee Lake
R, it does not work on the recent Cascade Lake.

EchoLoad relies on the load stalling behavior of the CPU, an effect
which has not been exploited so far. As this effect is deeply rooted in the
design of the microarchitecture, it cannot easily be fixed (cf. Section 3.1),

4. FLARE: Mitigating KASLR Breaks 153

neither in software nor hardware. Moreover, the attack does not have any
requirements as it solely relies on memory loads. As a consequence, even
the most recent Cascade Lake is affected by EchoLoad.

4 FLARE: Mitigating KASLR Breaks

In this section, we propose FLARE, a defense against KASLR attacks
rooted in a CPU’s microarchitecture.

FLARE has a negligible memory overhead of only a few kilobytes and
next to no runtime overhead. FLARE tackles the root causes of all the
microarchitectural KASLR breaks discussed in Section 3.5. It builds on
ideas from KAISER [30] and LAZARUS [25] to fix remaining weaknesses
efficiently and securely.

The challenge is to fully eliminate differences in:

C1: timing and behavior for mapped and unmapped pages,
C2: timing for different page sizes, and
C3: timing between executable and NX pages.

As we show in this section, FLARE successfully tackles these challenges.
However, before we justify these challenges, we briefly introduce a threat
model. We then discuss implementation details, corner cases, and pitfalls
in Section 4.1.

Threat Model. Our attacker can run unprivileged native code on an
up-to-date OS. Furthermore, the attacker knows the exact version of the
Linux kernel that the victim uses and, hence, knows the exact structure
of the kernel image in memory.

C1: Differences for Mapped and Unmapped Pages. In Section
3.5, we discuss that recent attacks, including EchoLoad, can distinguish
mapped from unmapped pages [10, 32, 36, 49, 77]. Therefore, the first
challenge is to prevent an attacker from detecting the KASLR offset based
on that information.

To tackle this challenge, we map all unmapped virtual addresses in
the randomization range to a dummy physical page. Therefore, none of
the known attacks that rely on distinguishing mapped from unmapped
addresses can de-randomize the kernel anymore.

C2: Timing Differences for Page Sizes. In Section 3.5, we discuss
that the attack by Gruss et al. [32] can distinguish different page sizes:

154 Chapter 6. KASLR: Break It, Fix It, Repeat

v4.15 v5.0 v5.2

1,536 6,144 5,632

11 5 4

4KB 2MB

Figure 6.5: On recent Linux, several 2 MB pages in the kernel text segment
have been replaced by 4 kB pages.

Even if the entire kernel space has a valid mapping, different page sizes
can create a unique pattern which de-randomizes the kernel. This is
especially a problem as the kernel uses different page sizes for its mapping
(cf. Figure 6.5), possibly creating such a unique pattern. We tackle this
challenge by avoiding different page sizes in the kernel altogether.

C3: Timing Difference between Executable and NX Pages. Jang
et al. [49] showed that there is a timing difference between executable and
NX pages. We analyzed the kernel and discovered that executable and NX
pages are strictly separated. That is, after the first NX page in the address
space there is not a single executable page in the remaining address
space. To prevent this straightforward KASLR break, we randomize
the executable and the NX range separately and pad them each with
executable and NX pages respectively to the full randomization range.

4.1 Implementation Details

The different Linux kernel regions (cf. Section 2.5) are mapped with differ-
ent properties, i.e., different page sizes and permissions (e.g., executable
and NX). Note that we only need to protect the trampoline code if KPTI
is active, while we have to protect the following regions without KPTI.

Text Segment. Figure 6.5 shows that the text segment is mapped using
both 4 kB and 2 MB pages. To address C1, we map the entire range where
the text segment can be mapped using 4 kB pages, preventing the attacker
from seeing the actual text-segment range. To address C2, we map the text
segment only with 4 kB pages, preventing attacks that distinguish page
sizes [32]. This is not a large kernel change as this is already an ongoing

4. FLARE: Mitigating KASLR Breaks 155

0xffff ffff 8000 0000

Executable

code

0xffff ffff bfff ffff

Non-Executable

data

0xffff ffff 9fff ffff

Figure 6.6: With FLARE, all possible kernel offsets are physically backed, i.e.,
any potentially read value from this range will be zero. Code and
data is independently randomized in 512 MB ranges. This setup
allows preventing all currently known microarchitectural attacks
on KASLR.

development (cf. Figure 6.5). The kernel already supports disabling the
use of non-4 kB pages by clearing the CPU capability X86 FEATURE PSE.

Furthermore, to tackle C3, we use the solution shown in Figure 6.6.
We split the randomization range of the text segment in half. We then
use one half for the randomization of executable pages, i.e., the kernel
code, and the other for NX pages, i.e., the kernel data. Both regions
are then randomized independently to not leak their corresponding start
and end addresses. This split does not introduce any compatibility issues,
even with relative addressing, as we stay within the maximum addressable
range of 4 GB.

Modules. Modules already use 4 kB pages only, solving C2. In our
proposal, we pad the code and data sections of every module to a multiple
of 1 MB, depending on the size of the largest currently loaded module. We
then map the remaining offsets in the address range with dummy modules
using 4 kB pages that look exactly the same as the actual modules, i.e.,
same size for code and data sections. Consequently, using the technique
by Jang et al. [49] in the memory range for kernel modules, we only
see executable and NX regions of all the same size. This mitigates the
templating attack by Jang et al. [49] as the attacker cannot infer anymore
which module is real and which one is not. With this approach, we solve
all three challenges.

Naturally, the privileged user can dynamically load modules which
takes the place of a previous dummy module. Likewise, for the unload,
a dummy module replaces the kernel module mapping. However, the
implementation should be careful not to leave a small time window open
for an attack. In our FLARE proof-of-concept, we enable the loading of
modules by first removing the dummy mapping by hooking the function
load module. Then the module is loaded, and afterward, the mitigation

156 Chapter 6. KASLR: Break It, Fix It, Repeat

is re-applied. However, a proper implementation should exchange the
page-table entries directly instead. This way, it is guaranteed that no
time window is left for the attacker to observe the short unmapping
from a concurrent microarchitectural attack, as there simply is no short
unmapping. Furthermore, the loading and unloading of modules typically
does not happen for an average user.

Direct-Physical Map, Vmalloc, Vmemmap. We analyzed how the
direct-physical map, vmalloc, and vmemmap are mapped. None of the
pages mapped in this region is executable. Thus, we tackle challenges C1
and C3 by mapping all pages in the corresponding randomization regions
in our dummy mapping as NX.

Currently, the kernel does not use an explicit randomization range
for each of the three regions. Instead, the kernel uses one large range
and only guarantees to preserve their order. To mitigate the attack by
Gruss et al. [32], all three must use the same page size. We verified
that this is already the case when clearing the X86 FEATURE PSE CPU
capability at boot. As this causes significant pressure on the TLB, we
propose a different approach.

We propose that the kernel uses an explicit randomization range for
each of the three regions. Hence, to tackle C2, we can enforce that the
kernel consistently uses one page size per region. This mitigates the
attack by Gruss et al. [32]. In the analysis for our defense, we empirically
determined the page sizes used for each region. On our test machine
running Linux kernel 4.15, the kernel indicates during the boot process
that 1 GB pages are used for mapping the direct-physical map. However,
our analysis revealed that it is mapped using all three page sizes, i.e.,
4 kB, 2 MB, and 1 GB. Similarly, the vmalloc area uses both 4 kB and
2 MB pages. The vmemmap area consisted of 2 MB pages only.

Based on this analysis, we propose to consistently use 2 MB pages
for the vmemmap region and 4 kB pages for the vmalloc region. For
the direct-physical map, we use 1 GB pages. Unfortunately, we cannot
use such a huge dummy page for our mapping as we would reduce the
available physical memory by 1 GB. Instead, we pick 1 GB of RAM, which
is already mapped in the direct-physical map, and map it using a 1 GB
page in our dummy mapping. Hence, we avoid the additional memory
overhead without increasing the risk for exploitation as we map the page
as NX.

5. Evaluation 157

p
er

lb
en

ch
m

cf
om

ne
tp

p
xa

la
nc

bm
k

x2
64

de
ep

sj
en

g
le

el
a

ex
ch

an
ge

2
ca

ct
uB

SS
N

lb
m

w
rf

p
op

2
im

ag
ic

k
na

b

3
41

7
92

50
3

2
77 40

7

41
9

5
44

2
94

2,
5
61

1,
9
71 3
,9

54

3
,2

23 7,
1
34

3
,4

5
8

3
42

80
8

50
3

27
4

40
7

4
69 54

5

2
93

2,
55

2

1
,9

8
0

3
,9

59

3,
2
2
4

7,
13

2

3
,4

7
0

R
u

n
ti

m
e

No Mitigation Mitigation

Figure 6.7: Runtime overhead of FLARE on SPEC CPU 2017.

5 Evaluation

In this section, we evaluate the overhead of FLARE in three aspects,
namely runtime overhead using the SPEC CPU 2017 benchmarks [16],
module loading overhead, as well as the memory overhead. We also
evaluate the efficacy of FLARE by analyzing how successful it is in
preventing microarchitectural attacks on KASLR.

5.1 Overhead Analysis

Runtime. We create our dummy mapping directly in the init mm struct
which is copied into every newly created process. We only have to apply
our mapping once, and every new process has the mitigation enabled.
Hence, we expect no runtime overhead.

We confirmed this using the LMbench microbenchmark suite [64]. We
evaluated process-creation time (fork and exec) and context switches on
an Intel i7-8650U (Linux kernel 5.0.0-15). This involves a larger number
of TLB invalidations and address resolutions, i.e., the situations that may
see a performance penalty. For process creation, we do not encounter any
overhead. Both with and without FLARE, the process creation takes on
average 61.14 µs (n = 10

5
, σx̄ = 0.27). Similarly, there is no difference

in the syscall latency. In both cases, the latency is on average 1.03 µs
(n = 10

5
, σx̄ = 0.006).

For a real-world workload, we evaluated the runtime overhead using
the SPEC CPU 2017 benchmark. We ran the benchmark once with our
mitigation and once without it on an Intel Xeon Silver 4208. We excluded

158 Chapter 6. KASLR: Break It, Fix It, Repeat

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

S
ta

ll
s

[%
]

(a) EchoLoad

-16 -8 0 8 16 24 32 40
100
200
300
400
500

Kernel offset [MB]

P
re

fe
tc

h
ti

m
e

(b) Prefetch [32]

-16 -8 0 8 16 24 32 40
0

10
20
30

Kernel offset [MB]

R
ep

et
it

io
n

s

(c) Data Bounce [77]

-16 -8 0 8 16 24 32 40

2,900
2,920
2,940
2,960

Kernel offset [MB]

P
a
g
e-

fa
u

lt
ti

m
e

(d) Double page fault [36]

-16 -8 0 8 16 24 32 40
260
280
300
320
340

Kernel offset [MB]

T
S

X
ti

m
e

(e) DrK [49]

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

W
T

F
su

cc
es

s
[%

]

(f) Fallout [10]

Figure 6.8: Detecting the kernel (offset 0 to 32 MB) with all known microar-
chitectural attacks on KASLR without FLARE () and with
FLARE (). For all attacks, FLARE successfully prevents the
detection of the kernel.

some benchmarks in both the intspeed and fpspeed benchmark as they
already crashed or did not compile on our vanilla Linux system. Figure 6.7
shows the results. As expected by the design of FLARE, we exhibit next
to no runtime overhead.

Module Loading. Next, we evaluated the increase in module loading
time. We first establish a baseline by loading and unloading a simple test
module 10

4
times. We then load the FLARE proof of concept, which

requires removing and re-applying the dummy mapping for every module
load, thus overapproximating the overhead of our mitigation. We again
load and measure the required time 10

4
times. We only observe a 4 %

increase from 2.39 ms to 2.48 ms per module load. When implemented in
the Linux kernel, the module memory allocation logic is made aware of
the dummy mappings so that they are treated like free memory. Thus,
overheads are avoided entirely except in cases where the modules have to
be re-padded, where we observe the overheads to be negligible.

Memory. Finally, we analyzed the memory overhead of FLARE, which
is minimal in our proof of concept. We always map the same dummy page
in the paging hierarchy and re-use the same page directory and page table.
We do not need a new PDPT, as we are working on existing 1 GB ranges.
Therefore, we only require one page each for the new page directory, page

5. Evaluation 159

table, and one page to point to. As all these pages are 4 kB, the maximum
overhead is 12 kB. To map huge dummy pages, the maximum overhead
is only increased by 2 MB. The direct-physical map padding with 1 GB
pages does not consume additional memory (cf. Section 4).

5.2 Mitigate Microarchitectural KASLR Breaks

In a first step, we evaluated the effectiveness of FLARE in preventing
breaking the randomization of the kernel text segment. Using a vanilla
Linux 5.0 kernel, we test microarchitectural attacks on KASLR that are
not mitigated through orthogonal countermeasures (cf. Section 3.5) with
KPTI disabled (cf. Figure 6.8). In all cases, we first establish a baseline
of the attack without FLARE in place, which shows the exact position of
the kernel with all attacks.

We then load FLARE and re-evaluate all attacks. We see for each
attack that the kernel can no longer be distinguished from other positions.
With EchoLoad (Figure 6.8a), all offsets are backed by a physical page,
the load succeeds, but the CPU returns zero for the illegal access. The
stall percentage is based on cache hits and misses on the probe array, not
performance counter values. With the prefetch side channel (Figure 6.8b),
we see that the prefetch instruction can now also prefetch all other possible
locations, mitigating the KASLR break. Data Bounce (Figure 6.8c) also
no longer distinguishes kernel locations from dummy mappings as store-
to-load forwarding works for all possible offsets. The double-page fault
(Figure 6.8d) as well as the DrK attack (Figure 6.8e) also do not work
anymore, exhibiting the same timing across the whole address range. With
Fallout (Figure 6.8f), we also see no difference anymore as every page
allows to trigger the WTF effect. An attack that tries to detect our
dummy mapping based on timing the page-table walk is also not possible.
Even though the physical page is shared across all dummy mappings, a
TLB entry for one mapping is not shared with another. Hence, each access
to a new page requires a full page-table walk. Our dummy mapping can
also not be uncoverd via the cache as an access to a privileged address
does not load the data into it [39, 77, 80]. Based on the results shown in
Figure 6.8, none of the currently known microarchitectural attacks that
are not mitigated through orthogonal countermeasures (cf. Section 3.5)
can de-randomize the kernel location despite FLARE. This empirically
confirms that we solve challenge C1.

Next, we de-randomize the kernel based on the timing difference
between executable and NX pages [49]. We confirm that tackling only C1

160 Chapter 6. KASLR: Break It, Fix It, Repeat

0 8 16 24
140

150

160

170

Kernel
Text

Read-
only
Data

Kernel offset [MB]

T
S
X

ti
m

e

0 8 16 24
140

150

160

170

Kernel
Text

Kernel offset [MB]

T
S
X

ti
m

e

Figure 6.9: DrK [49] distinguishes executable from NX pages. An attacker can
observe the switch to NX pages directly after the executable pages
(left), when tackling only C1 and C2 () and entirely without
() FLARE. With full FLARE (right), this attack is also fully
mitigated.

and C2 is insufficient (cf. Figure 6.9). However, full FLARE (cf. Figure 6.9)
separates the regions and the switch from executable to NX is not visible
in this region anymore but at the pre-defined start of the randomization
range (cf. Figure 6.6).

Next, we used the prefetch side-channel attack to try to break KASLR
based on different page sizes. The different levels visible in the default
case of Figure 6.8b show the different paging levels for the address we test.
If nothing is mapped in the PML4, we observe the highest time. There is
a drop in the access time for addresses with no PDPT entry, and another
drop for addresses that map to an entry in the page table, i.e., a 4 kB
page. Thus, the prefetch side channel shows the different paging levels [32].
With FLARE in place, we can no longer see the difference in page sizes as
all possible locations as well as the kernel are mapped using 4 kB pages.
Thus, we empirically confirmed that our strategy for C3 works, defeating
microarchitectural attacks on KASLR based on different page sizes.

6 Related Work

With the advent of KASLR, many different attacks have been proposed to
break KASLR. One problem is that the kernels of the major OSs cannot
change the randomization at runtime. Hence, if an attacker knows the
KASLR offset, it is valid until the next time the OS is rebooted. So far,
most of the attacks on KASLR relied either on software vulnerabilities or
side-channel attacks on the microarchitecture as discussed in Section 3.5.

6.1 Software-based KASLR Breaks

On Linux, parts of kernel pointers are often disclosed inadvertently
through kernel interfaces, e.g., due to uninitialized structure fields or

6. Related Work 161

structure padding [85]. There have been many such software vulner-
abilities in kernels (e.g., CVE-2012-6138, CVE-2013-1825, 1826, 1827,
1873, 2634, 2635, 2636) that revealed parts of kernel addresses. Simi-
larly, for Windows, multiple methods leak kernel pointers, e.g., using the
Win32ThreadInfo or the Desktop heap [75]. Other attacks on KASLR
relied on the fact that kernel addresses were used as unique identifiers [85],
or as seed for pseudo-random numbers [52]. For debugging reasons, kernel
addresses were often visible in log files or debugging interfaces such as the
perf subsystem [18].

6.2 Mitigating Software-based KASLR Attacks

While software bugs causing KASLR breaks can be easily fixed, there are
also general concepts for preventing address leakage from the kernel. Linux
introduced a setting to mask kernel pointers in log files with a random
mask [73]. Thus, a developer sees which pointers are the same, but an
attacker cannot learn the actual pointer value and, thus, the KASLR
offset. This mitigation reduces the risk of leaking the KASLR offset
without impairing the debugging capabilities. The PaX Team proposed
STACKLEAK [15], a mechanism to clear kernel-stack memory which is no
longer in use. This reduces accidental address leakage from uninitialized
stack values.

6.3 Mitigate Microarchitectural KASLR Breaks

While microarchitectural attacks on KASLR cannot be simply fixed in
software, there are software-based workarounds. Gruss et al. [30, 32]
proposed stronger kernel isolation to prevent microarchitectural attacks
on the kernel by unmapping the kernel address space when running in
user space. Thus, in theory, there is no valid kernel address in user space,
preventing all microarchitectural attacks on the kernel. However, while
their proposal is deployed on all major OSs to prevent Meltdown [59], it
cannot prevent our KASLR break (cf. Section 3.2). The reason is that
x86 requires some kernel pages always to be mapped, even when running
in user space [30].

Lazarus [25] proposed a similar approach to KAISER [30]. It is
based on fencing the kernel paging entries off from those of the user
space by separating user and kernel page tables. Therefore, the Memory
Management Unit can no longer use entries pointing to kernel space
memory from user space. Contrary to KAISER, Lazarus uses dummy
mappings to hide the context switching code while KAISER separates it

162 Chapter 6. KASLR: Break It, Fix It, Repeat

from the rest of the kernel code section. However, it does not tackle the
challenges we identified and does not defeat all known microarchitectural
attacks on KASLR.

7 Conclusion

In this paper, we analyzed Intel’s recent hardware fixes for Meltdown.
Our analysis led to the understanding that illegal memory accesses do
not lead to a CPU stall, but instead, the illegally loaded data is zeroed-
out. With EchoLoad, we presented a novel technique based on Flush+
Reload to distinguish stalling loads from transiently executed ones. Hence,
EchoLoad enables an attacker to detect physically-backed kernel addresses
and break KASLR. Our KASLR break is the fastest and most reliable
microarchitectural KASLR break presented so far, taking only 40 µs to
de-randomize the kernel. The only requirement for EchoLoad are memory
loads, allowing it to be mounted from restricted environments such as
SGX and JavaScript. We presented the first JavaScript-based Meltdown
attack and KASLR break on the systems that do not receive Meltdown
patches, i.e., x86 32-bit OSs.

With FLARE, we proposed a generic approach for protecting the
kernel against microarchitectural KASLR breaks. We verified that FLARE
mitigates the root cause behind current microarchitectural KASLR breaks
and yields a uniform behavior across the kernel address space. Thus,
considering the state of the hardware mitigations, we propose to deploy
FLARE even on the most recent CPU generations.

Acknowledgments

We thank our anonymous reviewers for their comments and suggestions
that helped improving the paper. This project has received funding from
the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement No 681402).
This work has been supported by the Austrian Research Promotion
Agency (FFG) via the project ESPRESSO, which is funded by the
province of Styria and the Business Promotion Agencies of Styria and
Carinthia. Additional funding was provided by generous gifts from Intel,
ARM, and Cloudflare. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References 163

References

[1] Tiago Alves. TrustZone: Integrated Hardware and Software Security.
2004.

[2] Apple Inc. OS X Mountain Lion Core Technologies Overview. 2012.
url: http://movies.apple.com/media/us/osx/2012/docs/OSX_

MountainLion_Core_Technologies_Overview.pdf.

[3] ARM Limited. Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism. 2018.

[4] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way.” In: CHES. 2014.

[5] Daniel J. Bernstein. Cache-Timing Attacks on AES. 2004.

[6] Erik Bosman and Herbert Bos. “Framing Signals - A Return to
Portable Shellcode.” In: S&P. 2014.

[7] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector.” In: S&P. 2016.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software Grand
Exposure: SGX Cache Attacks Are Practical.” In: WOOT. 2017.

[9] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Transient
Execution Attacks and Defenses.” In: USENIX Security Symposium.
2019.

[10] Claudio Canella et al. “Fallout: Leaking Data on Meltdown-resistant
CPUs.” In: CCS. 2019.

[11] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. “Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity.” In: USENIX Security Symposium. 2015.

[12] Nicholas Carlini and David A. Wagner. “ROP is Still Dangerous:
Breaking Modern Defenses.” In: USENIX Security. 2014.

[13] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: CCS. 2010.

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf

164 Chapter 6. KASLR: Break It, Fix It, Repeat

[14] Liang Chen and Qidan He. Shooting the OS X El Capitan Kernel
Like a Sniper. 2016.

[15] Jonathan Corbet. Preventing kernel-stack leaks. Mar. 2018. url:
https://lwn.net/Articles/748642/.

[16] Standard Performance Evaluation Corporation. SPEC CPU 2017.
2017. url: https://www.spec.org/cpu2017/.

[17] Ian Cutress. Spectre and Meltdown in Hardware: Intel Clarifies
Whiskey Lake and Amber Lake. Aug. 2018. url: https://www.

anandtech.com/show/13301/spectre-and-meltdown-in-hardware-

intel-clarifies-whiskey-lake-and-amber-lake.

[18] Lizzie Dixon. Breaking KASLR with perf. 2017. url: https://blog.
lizzie.io/kaslr-and-perf.html.

[19] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/.

[20] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR.”
In: MICRO. 2016.

[21] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016.

[22] Ulf Frisk. Windows 10 KASLR Recovery with TSX. 2016. url:
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-

with-tsx.html.

[23] Thomas Garnier. Kernel memory randomization and trampoline
page tables. Aug. 2016. url: https : / / medium . com / @mxatone /

kernel - memory - randomization - and - trampoline - page - tables -

9f73827270ab.

[24] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware.” In: Journal of Cryptographic Engineering
(2016).

[25] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. “LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization.” In: RAID. 2017.

[26] Jason Gionta, William Enck, and Per Larsen. “Preventing kernel
code-reuse attacks through disclosure resistant code diversification.”
In: Communications and Network Security (CNS). 2016.

https://lwn.net/Articles/748642/
https://www.spec.org/cpu2017/
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake
https://blog.lizzie.io/kaslr-and-perf.html
https://blog.lizzie.io/kaslr-and-perf.html
https://lwn.net/Articles/569635/
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html
https://medium.com/@mxatone/kernel-memory-randomization-and-trampoline-page-tables-9f73827270ab
https://medium.com/@mxatone/kernel-memory-randomization-and-trampoline-page-tables-9f73827270ab
https://medium.com/@mxatone/kernel-memory-randomization-and-trampoline-page-tables-9f73827270ab

References 165

[27] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: S&P. 2014.

[28] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU.” In: NDSS. 2017.

[29] Daniel Gruss, Dave Hansen, and Brendan Gregg. “Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.”
In: USENIX ;login (2018).

[30] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR.” In: ESSoS. 2017.

[31] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack.” In:
DIMVA. 2016.

[32] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR.” In: CCS. 2016.

[33] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches.” In: USENIX Security Symposium. 2015.

[34] Noam Hadad and Jonathan Afek. Overcoming (some) Spectre
browser mitigations. 2018. url: https://alephsecurity.com/2018/
06/26/spectre-browser-query-cache/.

[35] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018.

[36] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Timing
Side Channel Attacks against Kernel Space ASLR.” In: S&P. 2013.

[37] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. May 2019. url: https://software.intel.com/security-

software - guidance / insights / deep - dive - intel - analysis -

microarchitectural-data-sampling.

[38] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. url: https : / / www . intel . com / content / www / us /

en / architecture - and - technology / 64 - ia - 32 - architectures -

optimization-manual.html.

https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

166 Chapter 6. KASLR: Break It, Fix It, Repeat

[39] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[40] Intel. Intel Analysis of Speculative Execution Side Channels. July
2018. url: https : / / software . intel . com / security - software -

guidance/api-app/sites/default/files/336983-Intel-Analysis-

of-Speculative-Execution-Side-Channels-White-Paper.pdf.

[41] Intel. Performance Monitoring Impact of Intel Transactional Syn-
chronization Extension Memory. 2019. url: https://cdrdv2.intel.
com/v1/dl/getContent/604224.

[42] Intel. Speculative Execution Side Channel Mitigations. Revision 3.0.
2018.

[43] ecma international. ECMAScript 2018 Language Specification. 2018.
url: https://www.ecma-international.org/ecma-262/9.0/index.
html.

[44] Alex Ionescu. Twitter: Windows KASLR. 2016. url: https://

twitter.com/aionescu/status/725399988306644992.

[45] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES.” In: S&P. 2015.

[46] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES.” In:
RAID’14. 2014.

[47] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. “Block Oriented Programming: Automating Data-Only
Attacks.” In: CCS. 2018.

[48] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-
Bomb: Locking Down the Processor via Rowhammer Attack.” In:
SysTEX. 2017.

[49] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX.” In: CCS.
2016.

[50] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. 2016.

[51] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

[52] Amit Klein and Benny Pinkas. “From IP ID to Device ID and
KASLR Bypass.” In: USENIX Security. 2019.

https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://cdrdv2.intel.com/v1/dl/getContent/604224
https://cdrdv2.intel.com/v1/dl/getContent/604224
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://twitter.com/aionescu/status/725399988306644992
https://twitter.com/aionescu/status/725399988306644992

References 167

[53] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[54] Paul C. Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems.” In: CRYPTO. 1996.

[55] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.

[56] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
Byunghoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves.” In: USENIX Security Symposium.
2017.

[57] Linux. Complete virtual memory map with 4-level page tables. 2019.
url: https://www.kernel.org/doc/Documentation/x86/x86_64/mm.
txt.

[58] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. “ARMageddon: Cache Attacks on Mobile
Devices.” In: USENIX Security Symposium. 2016.

[59] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[60] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical.” In:
S&P. 2015.

[61] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers.” In: CCS. 2018.

[62] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud.” In: NDSS. 2017.

[63] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. “Spectre is here to stay: An analysis of side-channels
and speculative execution.” In: arXiv:1902.05178 (2019).

[64] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for
Performance Analysis.” In: USENIX ATC. 1996.

[65] Andrei Mogage, Rafael Pires, Vlad Crăciun, Pascal Felber, and
Emanuel Onica. “Supply chain malware targets SGX: Take care of
what you sign (Practical Experience Report).” In: SRDS. 2019.

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

168 Chapter 6. KASLR: Break It, Fix It, Repeat

[66] Mozilla. Index Masking in Firefox. 2019. url: https://bugzilla.
mozilla.org/show_bug.cgi?id=1430051.

[67] Mozilla. performance.now resolution. 2019. url: https : / /

developer.mozilla.org/en-US/docs/Web/API/Performance/now.

[68] Net Applications.com. Desktop Operating System Market Share.
Aug. 2019. url: http : / / www . netmarketshare . com / operating -

system-market-share.aspx.

[69] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES.” In: CT-RSA. 2006.

[70] Matthew Panzarino. Apple releases OS X 10.8 Mountain Lion
Developer Preview 2, lists known issues. Mar. 2012. url: https:
//thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-

mountain-lion-developer-preview-2-to-mac-developers/.

[71] Colin Percival. “Cache missing for fun and profit.” In: BSDCan.
2005.

[72] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis
Polychronakis, and Vasileios P Kemerlis. “kRˆ X: Comprehensive
Kernel Protection against Just-In-Time Code Reuse.” In: EuroSys.
2017.

[73] Dan Rosenberg. kptr restrict for hiding kernel pointers. Dec. 2010.
url: https://lwn.net/Articles/420403/.

[74] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “RIDL: Rogue In-flight Data Load.” In: S&P. 2019.

[75] Morten Schenk. Development of a new Windows 10 KASLR Bypass
(in One WinDBG Command). 2019. url: https://www.offensive-
security.com/vulndev/development-of-a-new-windows-10-kaslr-

bypass-in-one-windbg-command/.

[76] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: S&P. 2015.

[77] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs.” In: arXiv:1905.05725 (2019).

https://bugzilla.mozilla.org/show_bug.cgi?id=1430051
https://bugzilla.mozilla.org/show_bug.cgi?id=1430051
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
http://www.netmarketshare.com/operating-system-market-share.aspx
http://www.netmarketshare.com/operating-system-market-share.aspx
https://thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/
https://thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/
https://thenextweb.com/apple/2012/03/16/apple-releases-os-x-10-8-mountain-lion-developer-preview-2-to-mac-developers/
https://lwn.net/Articles/420403/
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/

References 169

[78] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features.” In: AsiaCCS. 2018.

[79] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks.” In: NDSS. 2018.

[80] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling.” In: CCS. 2019.

[81] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript.” In: FC. 2017.

[82] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical
Enclave Malware with Intel SGX.” In: DIMVA. 2019.

[83] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Using SGX
to Conceal Cache Attacks.” In: DIMVA. 2017.

[84] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

[85] Brad Spengler. KASLR: An Exercise in Cargo Cult Security. 2013.
url: https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_
security.php.

[86] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.” In:
arXiv:1806.07480 (2018).

[87] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[88] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution.” In:
USENIX Security Symposium. 2018.

[89] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection.” In: 41th IEEE Sympo-
sium on Security and Privacy (S&P’20). 2020.

https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_security.php
https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_security.php

170 Chapter 6. KASLR: Break It, Fix It, Repeat

[90] Pepe Vila, Boris Köpf, and Jose Morales. “Theory and Practice of
Finding Eviction Sets.” In: S&P. 2019.

[91] WebAssembly. Features to add after the MVP. 2019. url: https://
github.com/WebAssembly/design/blob/master/FutureFeatures.md.

[92] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. “AsyncShock: Exploiting Synchronisation Bugs in Intel
SGX Enclaves.” In: ESORICS. 2016.

[93] Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Mem-
ory Abstraction with Transient Out-of-Order Execution. https:

//foreshadowattack.eu/foreshadow-NG.pdf. 2018.

[94] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud.” In: IEEE/ACM Transactions on Networking (2014).

[95] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,
Matti Hiltunen, and Richard Schlichting. “An exploration of L2
cache covert channels in virtualized environments.” In: CCSW’11.
2011.

[96] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014.

[97] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-Tenant Side-Channel Attacks in PaaS Clouds.” In:
CCS. 2014.

[98] Peter Zijlstra. Implement support for TSX Force Abort. 2019. url:
https://lkml.org/lkml/2019/3/12/1352.

https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://lkml.org/lkml/2019/3/12/1352

7
The Evolution of Transient-Execution

Attacks

Publication Data

Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. “The Evolution
of Transient-Execution Attacks.” In: GLSVLSI. 2020

Contributions

Main author.

171

172 Chapter 7. Evolution of Transient-Execution Attacks

The Evolution of Transient-Execution Attacks

Claudio Canella
1
, Khaled N. Khasawneh

2
, Daniel Gruss

1

1
Graz University of Technology, Austria

2
George Mason University, USA

Abstract

Historically, non-architectural state was considered non-observable. Side-
channel attacks, in particular on caches, already showed that this is not
entirely correct and meta-information, such as the cache state, can be
extracted. Transient-execution attacks emerged when multiple groups
discovered the exploitability of speculative execution and, simultaneously,
the exploitability of deferred permission checks in modern out-of-order
processors. These attacks are called transient as they exploit that the
processor first executes operations that are then reverted as if they were
never executed. However, on the microarchitectural level, these operations
and their effects can be observed. While side-channel attacks enable and
exploit direct access to meta-data from other security domains, transient-
execution attacks enable and exploit direct access to actual data from other
security domains. In this paper, we show how the transient-execution
landscape evolved since the initial discoveries. We show that the under-
standing and systematic view of the field has advanced and now facilitate
the discovery of new attack variants.

1 Introduction

Modern processors are designed to comply with a defined interface, the
instruction-set architecture, allowing to run the same binaries on different
processors. Hence, processors can optimize performance and efficiency
as long as the behavior is architecturally defined. One optimization
that improves performance substantially is caching. Caching is entirely
transparent to software, but it introduces a significant speed up for memory
accesses and execution by storing data likely to be accessed in the near
future in small internal CPU memories. Another optimization is branch
prediction. The processor guesses which direction of a branch is taken
and thus does not have to wait with the execution of further instructions

The original publication is available at https://dl.acm.org/doi/abs/10.
1145/3386263.3407583.

https://dl.acm.org/doi/abs/10.1145/3386263.3407583
https://dl.acm.org/doi/abs/10.1145/3386263.3407583

1. Introduction 173

until the branch is resolved. If the branch predictor correctly predicted
the outcome, a significant performance gain is possible.

From a security perspective, non-architectural state was long consid-
ered non-observable as there is no attacker-accessible interface to check
what is in the cache. Kocher [23] brought up the idea that caches could be
used in side-channel attacks. Such attacks measure the latency of memory
accesses to infer what is in the cache, yielding an interface that makes
non-architectural state visible to an attacker. However, the information
extracted here is only meta-information, i.e., whether the data was re-
trieved from the cache or main memory. While this enables powerful
cryptographic [28] and non-cryptographic [12] attacks, both the security
community and the architecture community deemed it most reasonable to
design code in a way such that secrets do not influence meta-information,
e.g., no secret-dependent memory accesses [3].

In 2018, Spectre [22] and Meltdown [25] were disclosed to the public.
They exploit transient execution, the execution of operations which should
not be executed, to leave microarchitectural traces. The processor runs into
transient execution when a branch is mispredicted, due to lazy exception
handling, or other microarchitectural constellations requiring at least
a partial pipeline flush or stall. Initially, it was expected that more
Spectre variants would be found, but Meltdown was perceived as a one-off
vulnerability.

With Foreshadow [39, 41], it became clear that further Meltdown-like
effects exist. Foreshadow extended the user-to-kernel attack, to a generic
attack able to leak data from any physical memory location. In some
sense, it foreshadowed the further development in this field, with many
different Meltdown-type attacks discovered by now [7, 31, 33].

While the field of transient-execution attacks has grown ever since its
initial discovery, so has the field of potential countermeasures. Concurrent
work has analyzed and highlighted different approaches from academia
and industry in mitigating Spectre-, Meltdown-, and LVI-type attacks [4].

In this paper, we show how the transient-execution landscape evolved
since these initial discoveries. We introduce a 6-phase generalization of
transient-execution attacks. We describe the currently known types of
Spectre attacks, exploiting microarchitectural mispredictions. In contrast
to previous work [6], we then provide a novel systematic view on Meltdown
attacks that emphasizes similarities between Meltdown-type attacks rather
than differences. We show that the understanding and systematic view of
the field has advanced since the 2018 disclosure. We conclude that the

174 Chapter 7. Evolution of Transient-Execution Attacks

discovery of new attack variants increasingly builds on this systematic
view.

Outline. Section 2 provides technical background on speculative
and out-of-order execution, cache attacks, and store-to-load forwarding.
Section 3 introduces transient-execution attacks and structures them in 6
attack phases. Section 4 describes state of the art on Spectre-type attacks,
Meltdown-type attacks based on the similarities we identified, and LVI
attacks as inverted Meltdown-type attacks. Section 5 concludes our paper.

2 Background

In this section, we provide background on speculative and out-of-order
execution, cache attacks in general as well as on store-to-load forwarding.

2.1 Speculative and Out-of-Order Execution

As CPUs need to outperform the previous generation of CPUs, vendors
include many different forms of optimizations. Two such optimizations
are speculative and out-of-order execution.

Out-of-Order Execution. CPUs parallelize more and more parts of
the execution of instructions. In the pipeline, the fetch, decode, execute,
and write-back stages handle a multitude of operations simultaneously.
This parallelization allows the CPU to execute instructions out-of-order as
soon as their operands are available, while instructions that precede them
in the instruction stream are still waiting for their operands. Even though
the instructions are executed out-of-order, they must still retire (commit)
in-order as in the instruction stream to ensure a correct architectural
state and enable precise interrupts. This design goes back to Tomasulo’s
algorithm [38].

Speculative Execution. Speculative execution is an optimization
that tries to improve the performance of the non-linear instruction stream
of an application. The CPU contains a branch prediction unit (BPU) that
tries to predict, based on past behavior, what the most likely direction
of control flow is in the instruction stream. The BPU typically consists
of several structures, each designed to predict the behavior of different
control-flow mechanisms. We refer to Canella et al. [6] for a more detailed
description of the individual structures that comprise the BPU.

2. Background 175

2.2 Cache Attacks

Cache attacks have become a widely used building block in microarchi-
tectural attacks, especially for transient-execution attacks. Cache attacks
exploit the timing difference between accessing data that resides in the
cache, e.g., data was used recently, and data in main memory. Hence,
due to the cache being closer to the CPU, its latency in responding to a
memory request is far lower than a main memory access. While there are a
variety of cache attacks such as Flush+Reload [13, 44], Prime+Probe [28,
29], Flush+Flush [10], or Evict+Time [3, 28], all of them share the same
three stages.

1. The attacker brings the microarchitecture into a pre-defined state.
2. The attacker lets the victim perform an operation.
3. The attacker infers information on victim behavior based on mi-

croarchitectural state changes.

Covert channels are a special case of cache attacks. In such a scenario,
the attacker controls both the sender and the receiver, enabling them to
bypass restrictions on the architectural level.

2.3 Store-to-Load Forwarding

For store-to-load forwarding, two components are used, namely the memory
disambiguation predictor and the store buffer. The idea for store-to-load
forwarding is to forward the data from a store that is in the store buffer
and has not yet been written back to the cache to a load that uses the
same address. There are four different cases that need to be considered
for store-to-load forwarding with respect to the load address:

• True positive match. A store buffer entry is matched with the
same full physical address. In this case, the data is forwarded, which
is the correct behavior.

• True negative match. No store buffer entry matches, and there
is no store buffer entry with the same full physical address. No data
is forwarded, which is the correct behavior.

• False negative match. No store buffer entry matches, although
there is one with the exact same full physical address. The load
retrieves stale data, e.g., from the L1 cache, and has to be reissued
later on.

• False positive match. A store buffer entry is matched, but the
full physical address check at the end fails. In this case, data is first
transiently forwarded, but the load has to be reissued later on.

176 Chapter 7. Evolution of Transient-Execution Attacks

Figure 7.1: High-level overview of a transient-execution attack in 6 phases: (1)
preparation, (2) transient-execution trigger, (3) access secret, (4)
encode secret, (5) architectural revert, (6) decode secret.

3 Basic Idea of Transient-Execution Attacks

With transient execution, we describe the execution of instructions that
are executed but whose results are never committed to the architectural
level. We refer to these instructions as transient instructions [6, 22,
25]. Nevertheless, these transient instructions leave traces behind in
the microarchitecture by changing its state, e.g., loading data into the
cache. The literature has so far identified two different causes of transient
execution, namely speculative and out-of-order execution [6, 22, 25]. With
speculative execution, it is possible to execute transient instructions due
to a wrong prediction of a branch or data dependency. Out-of-order
execution can lead to transient execution due to a previous instruction in
the pipeline triggering an exception. In that case, the next instructions in
the pipeline may still be executed. Both cases have one thing in common:
the operations and the architectural state have to be reverted, including
flushing the pipeline.

While transient-execution attacks so far have relied on side channels,
i.e., predominantly the cache, for the transmission, we note that they
themselves are not side channels, contradicting previous literature [14].

Canella et al. [6] proposed 5 distinct phases for a transient-execution
attack while Xiong and Szefer [43] propose 3 phases. The phases by Xion
and Szefer [43] are similar to the ones by Canella [6] with the three middle
phases merged together. We extend the proposal by Canella et al. [6]
with one additional distinct Phase 3 that we will describe in the following.
Our extended phases are shown in Figure 7.1. Note that each phase may
be either performed indirectly by the victim, i.e., attacker provides the
necessary trigger to the victim, or directly by the attacker.

3. Basic Idea of Transient-Execution Attacks 177

Phase 1. This phase is the preparation phase of the attack and
consists of two parts. In the first, the attacker prepares the microarchitec-
ture in a way that allows entering transient execution during which the
secret data is accessed. This includes ensuring that the transient window,
i.e., the time between the execution of the first transient instruction and
the last one, is large enough. In the second, the attacker prepares the
microarchitectural transmission channel so that the data can be recovered.

Phase 2. The attacker triggers transient execution using a trigger
instruction. For Spectre-type attacks, this could be any branch in the
victim domain. For Meltdown-type or LVI-type attacks, this could be any
form of an aborting instruction, i.e., an instruction that triggers a fault, an
assist, or an interrupt. In the case of Spectre-type and LVI-type attacks,
the trigger instruction is in the victim domain. For Meltdown-type attacks,
it is in the attacker domain.

Phase 3. We split Phase 3 from the proposal by Canella et al. [6] into
two phases, Phase 3 and Phase 4. In Phase 3, the transient instructions
are executed either in the victim or the attacker domain. Typically, these
instructions access data of interest to the attacker, i.e., a secret such as a
password. As a final step in this phase, the attacker prepares the data
for transmission through a microarchitectural covert channel such as the
cache.

Phase 4. This phase is the last in the transient domain. In this phase,
the attacker encodes the previously prepared data in the microarchitecture.
So far, the covert channel that has been used predominantly in the
published literature is the cache [6].

Phase 5. In this phase, the CPU realizes the mistake, i.e., the
misprediction or that an exception has been raised. The architectural
changes are reverted and the pipeline is flushed. The CPU then continues
with the execution of the correct instructions, i.e., a number of instructions
may have to be reissued. In the case of Spectre, the CPU executes the
correct side of the branch; in Meltdown, it executes the exception handler.
Nevertheless, in this phase, the information the attacker wants to obtain
is already encoded in the microarchitecture where not all changes are
reverted.

Phase 6. In the recovery phase, the attacker extracts the encoded
data from the microarchitectural level to the architectural level. As the
data is usually encoded in the cache, the attacker uses cache side channels,
such as Flush+Reload, to perform this task.

178 Chapter 7. Evolution of Transient-Execution Attacks

4 Transient-Execution Attacks

In this section, we discuss the known transient-execution attacks in more
detail. We first focus on attacks that belong to the Spectre class of attacks,
then move on to the Meltdown class of attacks, and finally discuss LVI-type
attacks.

4.1 Spectre-type Attacks

Spectre-type attacks so far exclusively rely on exploiting transient ex-
ecution following a misprediction. Misprediction occurs whenever the
CPU predicts to take the wrong path based on past behavior. To make
this prediction, the BPU consists of multiple predictors, each designed to
predict a different type of branch. The Pattern History Table (PHT) is
used to predict the outcome of a direct branch, such as an if-statement.
Typically, the PHT is indexed by some bits of a virtual address and con-
tains a saturating counter per entry [9]. The Branch Target Buffer (BTB)
is used to predict the target of a branch following an indirect branch. For
that, the BTB stores the previous jump target for the current address.
The Return Stack Buffer (RSB) is used to improve the performance of
return statements. Every call stores the return address at the top of the
RSB, and each return pops the top of it. The last predictor that has
been exploited so far is the memory disambiguator that is involved in
store-to-load forwarding. This predictor tries to predict whether a load
operation overlaps with a previous store operation [20].

Canella et al. [6] systematically analyzed Spectre-type attacks and how
each unit is shared within a processor core. Their analysis showed various
potential strategies for mistraining the individual branch predictors. Same-
address-space strategies mistrain within the same address space using
either the target address or a congruent address that refers to the same
entry in the predictors. They also showed that the same two strategies
can be exploited in a cross-address-space scenario if the predictor is shared
between hyperthreads. Their proposed classification also indicates for
each Spectre variant which predictor is exploited.

Spectre-type attacks require different types of gadgets, i.e., code se-
quences, to execute. These types, as well as different detection techniques,
have been analyzed by Canella et al. [6]; hence we refer the reader to their
paper for further information.

Spectre-PHT. Spectre-PHT was one of the first two Spectre variants
discovered by Kocher et al. [22]. Here, the PHT is exploited by mistrain-
ing it repeatedly to take a certain path following, e.g., a bounds check.

4. Transient-Execution Attacks 179

Afterward, the attacker can supply a value that would cause the CPU to
execute the other path of the bounds check, but due to the prediction, it
still executes the mistrained path. Schwarz et al. [34] have demonstrated
that such an attack is also possible via the network.

Spectre-BTB. Spectre-BTB is the second variant discovered by
Kocher et al. [22]. As the name indicates, it exploits the behavior of the
BTB to force the CPU to predict a wrong jump target. With Spectre-BTB,
the attacker can redirect control-flow to virtually any address within the
victim domain. Similarly to return-oriented programming (ROP) [35], the
attacker can chain multiple jump targets together to achieve arbitrary
transient execution as far as the transient window allows. Straight-line
speculation vulnerabilities [2] exploiting exception generating instructions,
unconditional direct and indirect branches also fall into this category.

Spectre-RSB. Horn [15] and Kocher et al. [22] first mentioned the
possibility of exploiting the RSB, but the first attack was demonstrated
by Koruyeh et al. [24] and Maisuradze and Rossow [26]. In a Spectre-RSB
attack, the attacker poisons the RSB with malicious return destinations
that the victim program pops from the stack upon a return, redirecting
control flow to a leak gadget. Straight-line speculation vulnerabilities [2]
exploiting exception or function returns fall into this category as well.

Spectre-STL. Horn [16] demonstrated that loads can transiently
obtain stale values. The reason for that is that the memory disambiguator
predicts that a current load does not depend on any previous store. The
load operation is then scheduled before the preceding store and obtains
the old value from the cache. In its essence, Spectre-STL exploits a false
negative match in the store buffer.

4.2 Meltdown-type Attacks

Canella et al. [6] proposed a canonical naming scheme for Meltdown-type
attacks. In the first layer, they distinguish the type of the fault or the assist
that causes transient execution. In the following layers, they distinguish
different reasons for the fault or assist and from which buffer they leak
from. Consequently, every Meltdown-type attack has a precise canonical
name.

In this paper, we want to highlight the similarities between the different
Meltdown-type attacks. Based on our analysis of the attacks, we divide
Meltdown-type attacks into the following three groups based on their
microarchitectural behavior:

180 Chapter 7. Evolution of Transient-Execution Attacks

• Deferred Permission Check. Meltdown-type attacks in this
category show architecturally correct behavior but with a lack of
permission checks, e.g., Meltdown-US [25]. These Meltdown-type
attacks perform operations that, from the CPU’s perspective, would
be valid and meaningful at a different permission level. For instance,
attempting to access a kernel address is valid and meaningful for
kernel code.

• Incorrect Use of Intermediate Values. Some Meltdown-type
attacks exploit the usage of intermediate values to retrieve data,
e.g., Foreshadow [39, 41]. The behavior exploited in these attacks is
always either not valid or not meaningful, regardless of the permission
level. For instance, the architecture defines that a non-present page-
table entry may contain any data. Interpreting this data, e.g., as a
physical address, is always incorrect.

• Use-After-Free. Newer Meltdown-type attacks show behavior that
is similar to use-after-free vulnerabilities, causing the usage of stale
values, e.g., ZombieLoad [33], RIDL [31], Fallout [7].

Deferred Permission Check

The idea behind Meltdown-type attacks in this category is that data is
forwarded despite the permission check failing in parallel. For each load
µOP that is added to the re-order buffer, a new entry in the load buffer
is reserved. When the load µOP is scheduled, the load buffer is updated
with information about the new load, i.e., register number and virtual
address information. Simultaneous to the lookup in the memory hierarchy,
the TLB is checked to retrieve the corresponding physical address. Once
the page-table information has been retrieved, the permissions are checked.
As the permission check fails, the processor raises a fault but still updates
the physical page number in the load buffer. At this point in time, the
data is ready to be forwarded to the register and can be used in subsequent
transient instructions.

Attacks. Meltdown-US, the original Meltdown [25], exploits faults
following a check on the user-space-accessible bit and allows leaking kernel
data. Canella et al. [5] demonstrate such an attack on 32-bit Linux systems
using JavaScript and also provide the first detailed analysis of Intel’s
hardware Meltdown mitigation. Canella et al. [6] used Meltdown-PK to
bypass read and write isolation provided by Intel’s memory protection keys.
Furthermore, they showed that hardware instructions for bounds checking
provided on both IA-32 and IA-64 can be bypassed with Meltdown-BND

4. Transient-Execution Attacks 181

and Meltdown-MPX. Meltdown-BND was also the first demonstration of
Meltdown-type effects on AMD processors. Other attacks demonstrated
that data can be leaked from registers. The first, Meltdown-GP [1, 17, 19]
can be used to leak data from privileged system registers. With the second,
Stecklina and Prescher [36] showed that registers that can be switched
between kernel and user mode can be exploited. In their paper, they
targeted FPU and SIMD registers. Xiao et al. [42] developed a framework
to study transient-execution attacks, discovering a new Meltdown variant
on AMD processors that bypasses segment limits.

Two cases of store-to-load forwarding, namely the true positive and
the true negative match, also belong in this attack category. For a
true positive match, Kiriansky and Waldspurger [21] observed that the
writable bit is transiently ignored when performing store-to-load forward-
ing. Schwarz et al. [32] and Canella et al. [5, 6] demonstrated that this also
happens for other checks, e.g., the user-space-accessible bit. For a true
negative match, Schwarz et al. [32] and Canella et al. [5, 6] showed that
the information about the negative case can be abused in combination
with the true positive case for distinguishing valid addresses from invalid
ones, enabling KASLR breaks.

Incorrect Use of Intermediate Values

This category mainly consists of Meltdown-P attacks [6, 39, 41].
Meltdown-P attacks follow the same behavior as a Meltdown-US attack,
but instead of exploiting the user-accessible bit it exploits the present bit.
At the point where the TLB is queried for the valid translation, the lookup
fails as the page is indicated as not being present. To perform the page-
table walk, a microcode assist is issued [33]. As the attacker runs within
a virtual machine, two such walks have to be issued as the guest virtual
address is first translated into a guest physical which is then translated
into a host physical address. When the information of the guest page table
is checked, none of the information is valid as the present bit is not set,
causing the processor to raise a fault. Nevertheless, the physical address
field in the load buffer is filled out with the information from the page
table, i.e., the guest physical address. Similar to Meltdown-US, the data
is ready to be forwarded to the register, and the processor matches the
guest’s physical address to the cache line tag of the retrieved data. This
allows an attacker to read arbitrary host physical memory by exploiting
non-present page-table entries and a transient access to them.

182 Chapter 7. Evolution of Transient-Execution Attacks

Attacks. Van Bulck et al. [39] have demonstrated this effect in the
context of transiently forwarding data from SGX-protected cache lines.
Weisse et al. [41] have extended their work by demonstrating the effect
in a non-SGX environment, such as the aforementioned virtual machine
scenario.

The two remaining cases of store-to-load forwarding, namely the false
negative and the false positive match, are also in this category. For
a false negative match, Cauligi et al. [8] describe a theoretical attack
that combines Meltdown- and Spectre-type effects. In such an attack,
the memory disambiguator predicts a dependency, allowing the load to
continue. The store buffer then only finds a partial match and returns
the incorrectly matched data. Canella et al. [7] exploited a false-positive
match to read recent writes from SGX enclaves or the kernel.

Use-After-Free

Use-after-free vulnerabilities are not only common in software [37]. We dis-
cuss the basic idea behind attacks in this category based on a ZombieLoad
v1 attack. While the steps are the same as in the previous attacks, the
suspected reason for the erroneous matching of the secret data is the stale
physical address from the load buffer. In a ZombieLoad v1 attack, the
store buffer, line-fill buffer, L1 data cache are looked up with the virtual
address. Due to a cache line conflict, the L1 data cache lookup fails,
leading to an abort and a subsequent re-issuing of the load. Nevertheless,
the current load, a zombie load, continues and returns data. The stale
physical page number (i.e., a use after free) is used to match the tag of
the previously retrieved data. If they match, the data is forwarded to the
register and can be leaked by subsequent instructions.

Attacks. The first description of such an attack was given by
Lipp et al. [25] when they demonstrated a Meltdown-US attack on un-
cached and uncacheable memory. They showed that leaking from un-
cacheable memory is only possible if an architectural access to the same
memory location occurs, i.e., a hyperthread performs a legal load. Accord-
ing to Lipp et al. [11, 25], the leakage originates in the line-fill buffer. Sub-
sequent publications further investigate this buffer as a leakage source [18,
27, 30, 31, 33]. On processors that do not leak from L1 directly anymore,
Van Schaik et al. [31] and Schwarz et al. [33] showed that there is still
leakage possible via so called microarchitectural data sampling (MDS)
attacks. For instance, Schwarz et al. [33] demonstrated different variants
to leak data from the line-fill buffer due to aborted loads continuing their

4. Transient-Execution Attacks 183

Attack Requirement

LVI-US victim repeatedly accesses a kernel address
LVI-RW illegal write to read-only memory
LVI-PK illegal access to a PKU-protected memory location
LVI-MPX, LVI-BND illegal out-of-bounds access
LVI-GP memory access triggering a general protection fault
LVI-NM FPU register access with FPU being unavailable
LVI on segment limits memory access outside segment limit

Table 7.1: The different LVI attacks relying on a deferred permission check and
what event they require to enter transient execution.

execution. Additionally, they showed that one of these variants even
affects Intel Cascade Lake CPUs that contain fixes for Meltdown and
MDS attacks. Finally, Schwarz et al. [33] also demonstrated that the
initial mitigation of using the verw instruction to overwrite buffers does
not fully work.

4.3 LVI-Type Attacks

Spectre turned previously known attacks on branch prediction around, not
exploiting the branch prediction to retrieve data from a previous execution,
but instead injecting a transient control-flow change into a victim to leak
data. LVI (Load Value Injection) [40] does the same with Meltdown,
i.e., instead of exploiting Meltdown-type effects to retrieve data from a
victim domain, it uses them to transiently inject data into the victim.
Contrary to Meltdown-type attacks, LVI attacks cannot always control
when a fault and other conditions occur as they occur within the victim
domain. In that sense, LVI is more similar to Spectre-type attacks where
certain gadgets within the victim are required. For LVI, the complexity
of gadgets is much lower as a single memory access can already be a LVI
gadget. The same is true for a single indirect call, jump, or return.

In principle, an LVI attack attempts to obtain data from the victim
domain that the victim can legally access. All three of the previously
identified types of Meltdown-type effects can be used for LVI attacks, i.e.,
deferred permission checks, incorrect use of intermediate values, and use-
after-free. While all three types can be exploited, the deferred permission
check type of attacks is more realistic in the threat model of SGX because
they require repeated illegal behavior of the victim domain. Table 7.1
shows the different attack types relying on the deferred permission check
and what they require to trigger the attack.

184 Chapter 7. Evolution of Transient-Execution Attacks

In a normal scenario, faults are handled by the operating system,
preventing them from happening again. Hence, a more realistic scenario
for an LVI attack in a normal context is to use misprediction to suppress
the fault. Using misspeculation, the attacker can suppress the fault as
previous work has already outlined [6, 22, 25], but in this case, a Spectre-
type attack might already be sufficient to extract the targeted data from
the victim. In this scenario, LVI may only be of use if the Spectre-type
attack does not allow enough control of the victim, which LVI might be
able to supply.

In the SGX scenario, one type of attack that is particularly relevant
is the incorrect use of intermediate values. By inverting Meltdown-P
to obtain LVI-P, the attacker can transiently inject data from a chosen
physical address into the victim’s execution by unmapping a page and
loading data into the L1 data cache. For the LVI-NULL case, the attacker
can inject a NULL value instead, e.g., on processors with first-generation
mitigations. Both cases have been demonstrated by Van Bulck et al. [40].
For LVI-P-NULL, the attacker transiently injects a NULL value when
accessing the stack to read the return address from virtual address 0,
redirecting control flow to the location that is contained at this location.
In LVI-P-L1D, fake return addresses are injected to re-direct control flow
to an attacker chosen location.

For non-SGX-based LVI attacks, use-after-free type of attacks have
been shown to be the most effective [40]. In these scenarios, microarchi-
tectural assists have been used to trigger the use-after-free situation in
the line-fill buffer. The store buffer false positive match is one case that
can occur easily, but the requirements on gadgets are much higher than in
the LFB case. For this attack, the attacker has to place a matching store
in the store buffer, which is statically partitioned. Hence, the attacker has
to inject the store on the same hyperthread before a context switch or via
a gadget within the victim that stores to the attacker-tweakable address
before reading from an unrelated, but partially matching, address. If
the store is successfully injected, the store buffer false-positively matches
a store, i.e., without a full physical address match. As in the case of
ZombieLoad, the load in the victim continues but is ultimately squashed.
Nevertheless, the wrong data is transiently forwarded to the dependent
operations.

5. Conclusion 185

5 Conclusion

For a long time, the non-architectural state was considered to be unob-
servable. Side-channel attacks have demonstrated that this is not entirely
true as meta-information can be extracted from the microarchitectural
state. To optimize the performance of modern processors, vendors in-
cluded various optimizations such as speculative and out-of-order execution.
Transient-execution attacks exploit these features as their effect on the
microarchitectural state is not reverted even in the case that the result was
unrolled. Contrary to side-channel attacks, transient-execution attacks
allow direct access to the actual data from another security domain, not
just meta-data. In this paper, we showed how the transient-execution
landscape has evolved since the initial discoveries. We showed that the
understanding and systematic view of the field has advanced and now
facilitate the discovery of new attack variants.

Acknowledgments

This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and in-
novation program (grant agreement No 681402). This work has been
supported by the Austrian Research Promotion Agency (FFG) via the
project ESPRESSO, which is funded by the province of Styria and the
Business Promotion Agencies of Styria and Carinthia. Additional funding
was provided by generous gifts from ARM. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding parties.

186 Chapter 7. Evolution of Transient-Execution Attacks

References

[1] ARM. Cache Speculation Side-channels. Version 2.4. 2018.

[2] ARM. Straight-line Speculation. Version 1.0. 2020.

[3] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep. 2005.
url: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[4] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss,
and Khaled N. Khasawneh. “Evolution of Defenses against
Transient-Execution Attacks.” In: GLSVLSI. 2020.

[5] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. “KASLR: Break It, Fix It, Repeat.”
In: AsiaCCS. 2020.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Transient
Execution Attacks and Defenses.” In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019.

[7] Claudio Canella et al. “Fallout: Leaking Data on Meltdown-resistant
CPUs.” In: CCS. 2019.

[8] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Deian
Stefan, Tamara Rezk, and Gilles Barthe. “Towards Constant-
Time Foundations for the New Spectre Era.” In: arXiv:1910.01755
(2019).

[9] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers. 2016.

[10] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack.” In:
DIMVA. 2016.

[11] Daniel Gruss, Michael Schwarz, and Moritz Lipp. “Meltdown: Ba-
sics, Details, Consequences.” In: BlackHat USA. 2018.

[12] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches.” In: USENIX Security Symposium. 2015.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References 187

[13] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice.” In: S&P. 2011.

[14] Mark D Hill, Jon Masters, Parthasarathy Ranganathan, Paul
Turner, and John L Hennessy. “On the Spectre and Meltdown
Processor Security Vulnerabilities.” In: IEEE Micro 39.2 (2019),
pp. 9–19.

[15] Jann Horn. Reading privileged memory with a side-channel. 2018.

[16] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018.

[17] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018.

[18] Intel. Intel-SA-00233 Microarchitectural Data Sampling Advisory.
2019. url: https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00233.html.

[19] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018.

[20] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “SPOILER:
Speculative Load Hazards Boost Rowhammer and Cache Attacks.”
In: USENIX Security Symposium. 2019.

[21] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

[22] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[23] Paul C. Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems.” In: CRYPTO. 1996.

[24] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.

[25] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[26] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers.” In: CCS. 2018.

[27] Giorgi Maisuradze. “Assessing the Security of Hardware-Assisted
Isolation Techniques.” PhD thesis. Saarland University, 2019.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html

188 Chapter 7. Evolution of Transient-Execution Attacks

[28] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES.” In: CT-RSA. 2006.

[29] Colin Percival. “Cache missing for fun and profit.” In: BSDCan.
2005.

[30] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. “CrossTalk: Speculative Data Leaks Across
Cores Are Real.” In: S&P. 2021.

[31] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “RIDL: Rogue In-flight Data Load.” In: S&P. 2019.

[32] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs.” In: arXiv:1905.05725 (2019).

[33] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling.” In: CCS. 2019.

[34] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
“NetSpectre: Read Arbitrary Memory over Network.” In: ESORICS.
2019.

[35] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

[36] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels.” In:
arXiv:1806.07480 (2018).

[37] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[38] Robert M Tomasulo. “An efficient algorithm for exploiting multiple
arithmetic units.” In: IBM Journal of research and Development
11.1 (1967), pp. 25–33.

[39] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the
Intel SGX Kingdom with Transient Out-of-Order Execution.” In:
USENIX Security Symposium. 2018.

[40] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection.” In: S&P. 2020.

References 189

[41] Ofir Weisse et al. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. 2018. url:
https://foreshadowattack.eu/foreshadow-NG.pdf.

[42] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. “SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities.” In: NDSS. 2020.

[43] Wenjie Xiong and Jakub Szefer. “Survey of Transient Execution
Attacks.” In: arXiv:2005.13435 (2020).

[44] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014.

https://foreshadowattack.eu/foreshadow-NG.pdf

8
Evolution of Defenses against
Transient-Execution Attacks

Publication Data

Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and
Khaled N. Khasawneh. “Evolution of Defenses against Transient-Execution
Attacks.” In: GLSVLSI. 2020

Contributions

Main author.

191

192 Chapter 8. Evolution of Transient-Execution Defenses

Evolution of Defenses against
Transient-Execution Attacks

Claudio Canella
1
, Sai Manoj Pudukotai Dinakarrao

2
, Daniel Gruss

1
,

Khaled N. Khasawneh
2

1
Graz University of Technology, Austria

2
George Mason University, USA

Abstract

Transient-execution attacks, such as Meltdown and Spectre, exploit per-
formance optimizations in modern CPUs to enable unauthorized access to
data across protection boundaries. Against these attacks, we have noticed
a rapid growth of deployed and proposed countermeasures. In this paper,
we show the evolution of countermeasures against transient-execution
attacks by both industry and academia since the initial discoveries of
the attacks. We show that despite the advances in the understanding
and systematic view of the field, the proposed and deployed defenses are
limited.

1 Introduction

Transient execution enables unauthorized access to data across security
protection boundaries. Transient execution refers to the execution of
instructions that will eventually get squashed, i.e., their execution results
will not be committed to the architectural state. Nonetheless, transient
execution can leave a trace in the microarchitectural state, e.g., the
cache state. Therefore, transient-execution attacks utilize the execution
of transient instructions to access secret data, e.g., a password, and
leave a secret-dependent trace in the microarchitectural state that can
be recovered later using non-transient execution. These attacks can be
classified into three main classes, namely Meltdown, Spectre, and Load
Value Injection (LVI), based on the nature of the transient execution
and the attack direction. Spectre is based on misprediction in the victim
domain, Meltdown is based on faults and assists in the attacker domain,
and LVI is based on faults and assists in the victim domain.

The initial discovery of transient-execution attacks, i.e., Meltdown
and Spectre, became one of the most complex and largest industry-wide

The original publication is available at https://dl.acm.org/doi/10.1145/
3386263.3407584.

https://dl.acm.org/doi/10.1145/3386263.3407584
https://dl.acm.org/doi/10.1145/3386263.3407584

2. Background 193

embargos as processors from various manufacturers turned out to be
affected. As a result, many attacks variants were discovered, but more
noticeable is the proliferation of countermeasures from both industry
and academia. Given the large number and the rapid growth of both
adopted and proposed countermeasures, a systematic view is required to
understand the scope of current defenses and facilitate the evaluation of
future defenses.

In this paper, we show how the landscape of countermeasures against
transient-execution attacks evolved since the initial discoveries of the
attacks. We build our systematization based on a concurrent 6-phase gen-
eralization of transient-execution attacks [16]. We systematically describe
hardware- and software-based countermeasure advances from both indus-
try and academia. Beyond previous work [18, 99], our systematic view
does not only cover Spectre and Meltdown defenses but also LVI defenses.
We show that despite the advances in the understanding and systematic
view of the field, the proposed and deployed defenses are limited.

Outline. First, we briefly discuss background in Section 2. The
paper then gives a systematic overview of countermeasures for Spectre
(Section 3), Meltdown (Section 4), and LVI (Section 5). We conclude in
Section 6.

2 Background

Out-of-order and speculative execution. To increase performance,
modern CPUs rely on features like speculative and out-of-order execution.
With speculative execution, CPUs try to predict the outcome of a potential
control-flow change to start the execution of the likely path instead of
stalling. For that, the CPU provides various predictors that together
comprise the Branch Prediction Unit (BPU) [18]. Out-of-order execution
allows executing later instructions that are ready to be executed due
to the operands being available in advance but still requires to retire
them in order. Recently, these optimizations have resulted in various
transient-execution attacks [18, 55, 60].

Transient-execution attacks. Transient-execution attacks exploit
modern CPUs performance optimizations to enable unauthorized access
to data across protection boundaries. According to a concurrent general-
ization of transient-execution attacks, these attacks consist of 6 distinct
phases [16]: Phase 1 (preparation): preparing the micro-architecture to
enter transient execution, Phase 2 (misspeculation): triggering transient
execution using a trigger instruction, Phase 3 (access): accessing data

194 Chapter 8. Evolution of Transient-Execution Defenses

of interest, Phase 4 (encoding): encoding data of interest in the microar-
chitecture state, Phase 5 (leakage): end of transient window, i.e., the
architectural changes are reverted and the pipeline is flushed, and Phase
6 (decoding): decoding the microarchitectural state to the architectural
state.

3 Spectre Countermeasures

A countermeasure can try to break any phase of a Spectre attack [16]:
preparation, misspeculation, access, encoding, leakage, decoding. However,
targeting different phases has different effects on security. As the following
discussion also shows, mitigating all Spectre attacks in practice likely will
remain an open problem in the foreseeable future [62].

3.1 Preparation Prevention (Phase 1)

Phase 1 prepares the microarchitecture, e.g., the cache or branch predictors,
for the attack. Defenses targeting this phase usually do not prevent this
step entirely but only eliminate the attacker’s influence on the victim
domain. However, some variants do not require any preparation or run
in-place, making it hard to distinguish malicious training from benign
execution.

Industry

To prevent mistraining, the industry, e.g., Intel and AMD, extended
ISAs with a mechanism for controlling indirect branches [4, 47]. Indirect
Branch Restricted Speculation (IBRS) prevents unprivileged code from
influencing the prediction of privileged code. Single Thread Indirect
Branch Prediction (STIBP) restricts the sharing of branch prediction
mechanisms across hyperthreads. The Indirect Branch Predictor Barrier
(IBPB) prevents code that executes before it from affecting the prediction
of code following it. Some ARM CPUs implement specific controls that
invalidate the branch predictor, which should be used during context
switches [8]. Linux enabled those by default [52].

For Spectre-STL, ARM introduced new barrier instructions and control
registers to prevent the re-ordering of loads and stores [8]. Likewise,
Intel [47] and AMD [3] provide Speculative Store Bypass Disable (SSBD)
microcode updates.

3. Spectre Countermeasures 195

Academia

In contrast to industry, academia proposed more fundamental architecture
and microarchitecture changes. Vougioukas et al. [93] use per-context
buffers for branch predictor state to improve performance after branch
predictor flushes. Instead of flushing, Zhao et al. [102] randomize the
prediction based on the running context. Both proposals maintain per-
formance within a process across context switches. However, in-place
same-domain attacks are unaffected by these designs, and the approach
by Zhao et al. [102] may allow cross-domain and out-of-place attacks by
reverse-engineering the randomization.

3.2 Misspeculation Prevention (Phase 2)

Entirely disabling speculation seems easy, but the performance loss is
prohibitive [55, 87]. Hence, more realistic solutions in this phase only
selectively disable or stop speculative execution.

Industry

CPU vendors designed solutions using serializing instructions (lfence),
stopping speculation at security-critical branches. Unfortunately, these
branches have to be identified and essentially annotated on all layers.

Software-based defenses. Google proposed retpoline [89], a code
sequence replacing indirect branches with return instructions, to prevent
branch poisoning. Intel proposed randpoline [14] as a more efficient
alternative. Due to its probabilistic nature, randpoline does not fully
mitigate Spectre-BTB but only reduces success and leakage rates of attacks.
Linux and Windows use retpoline on affected machines by default [24, 45].

Hardware-based defenses. Both Intel and AMD described fencing-
based solutions [4, 46]. However, they also both introduced new architec-
tural features to constrain speculative execution on the microarchitectural
level including instructions for synchronization barriers for data (DSB) and
instructions (ISB), broader speculation barriers (CSDB) [8], new registers
to restrict speculative execution and instructions to restrain control-flow
(cfp) and data value (dvp) prediction, and cache prefetches (cpp) [7].
Even more broadly, both Intel (with serialize) and ARMv8.5-A [7]
(with sb) introduced generic speculative execution barriers.

On future CPUs with Control-flow Enforcement Technology (CET)
capabilities, retpoline might trigger false positives in the CET defenses [45].
Therefore, these CPUs implement enhanced IBRS, a hardware defense for

196 Chapter 8. Evolution of Transient-Execution Defenses

Spectre-BTB [45]. Intel [45] also provided a microcode update against
Spectre-RSB to stop speculation. However, on Skylake and newer archi-
tectures, the RSB may fall back to the BTB, re-enabling Spectre-BTB
attacks via return instructions. To prevent this, the RSB is stuffed with
the address of a benign gadget when entering the kernel [45].

Academia

Academia helped identifying the limitations of the deployed serializing
countermeasures [82]. Furthermore, they proposed techniques to reduce
the overhead of such defenses.

Software-based defenses. Schwarz et al. [82] showed that lfence
instructions only stop execution units from running subsequent operations.
Thus, fetch and decode still work, potentially leaking data through the
power-up of AVX functional units, the TLB, or the instruction cache.
Furthermore, performance-wise, serializing every branch can be worse
than using a processor without branch prediction in the first place [44].
Shen et al. [83] split code into small blocks and insert fences between the
entry point and a potentially leaking memory access to mitigate Spectre-
BTB and Spectre-RSB. However, an attacker could still jump unaligned
into a code block, i.e., directly to the memory access.

Instead of using lfence, Oleksenko et al. [68] propose to introduce
data dependencies between branch condition operands and operations
following the branch, stalling the execution of dependent instructions.
Unfortunately, due to compiler re-ordering, this proposal is limited in its
effectiveness.

As an alternative to retpoline and randpoline, Amit et al. [5] designed
JumpSwitches, which add a shortcut path for indirect branches with a
direct branch for the most likely target.

Hardware-based defenses. Vassena et al. [92] proposed to annotate
variables and insert lfences in code paths where such variables may
be leaked. To reduce the high cost of adding fences, Taram et al. [88]
propose a hardware-based technique to dynamically insert fences before
potentially leaking loads. Koruyeh et al. [57] argue that Spectre-BTB
and Spectre-RSB usually leave the defined control-flow graph. Hence,
they propose SpecCFI to repurpose control-flow integrity (CFI) to prevent
speculative diversion from the control-flow graph. Capability systems may
also contribute to Spectre mitigations [96].

Several designs introduce buffer flushes or hardware partitioning to
isolate different domains (e.g., security enclaves) [13, 31, 69]. However, a

3. Spectre Countermeasures 197

limitation to the flushing of caches and buffers upon domain switches is
that it is difficult to ensure no microarchitectural state persists. A similar
argument was made for the Raspberry PI 3 [90]. However, speculative
fetches may leave microarchitectural traces sufficient for an attack [9].

3.3 Data Access Prevention (Phase 3)

Preventing access to certain data during speculative execution is a promis-
ing approach to fully mitigate Spectre attacks. Solutions in this phase
focus on secrets in memory. None of the solutions presented for this phase
protect against Spectre attacks on data in registers.

Industry

Mainly, software-based defenses against data access were adopted by the
industry. With process isolation, Google presented the first defense for
this phase [22, 73]. Leaking secrets from other contexts is mitigated unless
the attacker can utilize Meltdown to bypass process isolation permission
checks.

Sanitizing values used in speculation can affect phase 3 and phase 4
as memory locations may be inaccessible. The idea of Speculative Load
Hardening (SLH) [19] is to check loads using branchless code to ensure
that it is executing along a valid control-flow path. One prerequisite for
this approach is that the hardware enables branchless and unpredicted
conditional updates of register values. Both LLVM and GCC support
SLH today and provide a builtin function to either emit a speculation
barrier or return a safe value if the instruction is transient [29].

WebKit employs two techniques to limit access to secret data [72]. First,
bound checks are replaced with index masking, thus, only introducing a
maximum range for the out-of-bounds violation. Second, a pseudo-random
poison value protects pointers from misuse. Using this approach, an
attacker would first have to learn the poison value to use it. Furthermore,
mispredictions on type checks result in the wrong type being used for the
pointer.

Academia

Academia proposed software and hardware defenses, including utiliz-
ing existing hardware technologies, e.g., Memory Protection Extensions
(MPX) and Memory Protection Keys (MPK).

198 Chapter 8. Evolution of Transient-Execution Defenses

Software-based defenses. Narayan et al. [66] implemented a sandboxing
framework for Firefox that supports process-based isolation. Furthermore,
Ojogbo et al. [67] used bitmasks to arithmetically guarantee that any
speculatively computed index is in bounds. Dong et al. [27] used Intel
MPX for this purpose.

As a probabilistic countermeasure, Sianipar et al. [84] constantly move
secret data around in virtual and physical memory. However, this only
reduces the leakage rate. In contrast, many deterministic proposals also
target this attack phase. Palit et al. [70] use a compiler extension that
keeps annotated secret data encrypted in memory most of the time. The
secret key is stored in a register. Hence, the attack surface is significantly
reduced. Kiriansky and Waldspurger [54] propose to restrict access to
sensitive data by using protection keys like Intel MPK technology [43].
However, as an attacker could use Spectre to disable MPK using the
wrpkru instruction, they propose a microcode update for this instruction
to include an lfence. Nonetheless, an attacker can still access the data if
the system is susceptible to Meltdown-PK [18]. Jenkins et al. [48] propose
to use ELFbac [10] or Intel MPK against Spectre attacks.

Hardware-based defenses. Schwarz et al. [79] propose multiple defenses
against Spectre that all rely on the annotation of secrets. The compiler
groups secret variables onto pages and marks these pages as secure. For
commodity systems, they then suggest a technique called ConTExT-
light [79], which uses uncacheable memory for secrets, making them
inaccessible during speculative execution. Kiriansky et al. [53] propose
to securely partition the cache across its ways, with protection domains
that isolate on a cache hit, cache miss, and metadata level. However, this
requires the correct management of these domains in software.

3.4 Data Encoding Prevention (Phase 4)

Kocher et al. [55] proposed to track data loaded during transient execution
and prevent its use in subsequent operations. Several academic works
propose new processor designs similar to this idea. There is still no
industry solution that targets this phase.

Academia

NDA [97] identifies potentially leaking instructions and defers their exe-
cution if they depend on a previous, not yet retired, operation. Yu et al.
[101] taint data that has not yet been committed and uses light-weight

3. Spectre Countermeasures 199

taint tracking to delay instructions that use such tainted inputs. Ca-
bodi et al. [15] use a similar approach and verify it using model checking.
Barber et al. [11] defer the wake up of dependent load instructions from
when the load instruction it depends on is retired instead of when it is
dispatched. Other works [32, 79] propose to annotate secrets and, thus,
only track and protect secrets in registers and the cache.

3.5 Leakage Prevention (Phase 5)

Several solutions propose to speculate as usual but to either store results in
new buffers or to completely remove the microarchitectural traces. Many
of the proposals only focus on memory accesses and the cache. While
effective against simple attacks, more sophisticated attacks may remain
unaffected [12].

Academia

Several proposed defenses introduce shadow hardware structures for tran-
sient execution [1, 34, 51, 63, 77, 100] to squash microarchitectural state
changes upon a wrong prediction. Lowe-Power et al. [61] and Sailesh-
war et al. [76] propose to undo modifications to the microarchitectural
state after misspeculation. Li et al. [59] design a solution that targets
specifically the Flush+Reload covert channel, which spreads different val-
ues to different pages and block speculative instructions that may lead to
accesses to different pages. Rockicki [74] also explored a similar direction
for in-order processors that use dynamic binary translation optimizations
for performance. Sakalis et al. [78] propose to delay L1 misses until they
are certain to be committed. Nonetheless, these proposals are vulnera-
ble against side channels other than caches, e.g., DRAM buffers [71], or
execution-unit congestion [2, 12].

3.6 Data Decoding Prevention (Phase 6)

Preventing covert channels is most likely infeasible as long as any shared
resource remains. Still, several works propose to mitigate or detect Spectre
by breaking or detecting the covert channel.

Industry

Accurate timers are a common, but not crucial, building block of covert
channels to distinguish microarchitectural states. Hence, to mitigate
browser-based attacks, many web browsers reduced the accuracy of timers

200 Chapter 8. Evolution of Transient-Execution Defenses

in JavaScript [21, 65, 72, 94]. However, custom timers can always be
constructed [81] and, thus, further mitigations are required [80]. After
initially disabling SharedArrayBuffers in response to Meltdown and
Spectre [21], they have been re-enabled with the introduction of site
isolation [85]. This is in line with an older research direction of randomizing
or reducing the resolution of timing measurements for security [39].

Academia

Several works propose to detect the cache covert channel used in Spectre
attacks and stopping the corresponding process. Most solutions proposed
so far use hardware performance counters for this purpose [26], while
Sabbagh et al. [75] use memory access traces, and Austin et al. [38] use the
cyclic interference property of contention-based cache leakage. However,
several works show that it is trivial to evade detection [25, 49, 50, 58].
It is important to note that these proposals only consider cache covert
channels.

Ge et al. [33] temporarily reduce the timer resolution whenever the
cache flush interface is used. Wang et al. [95] explore varying the processor
frequency to hinder native cache attacks. To alleviate the performance and
energy impact, they introduce value prediction. However, value prediction
is not inherently secure against Spectre attacks, and transiently diverting
the control-flow of a victim by inducing a false value via value prediction
effectively provides the attacker with the same capabilities. Chen et al.
[20] propose to mitigate transient-execution attacks on SGX by preventing
interruption of enclaves. However, an attacker does not necessarily have
to interrupt an enclave to mount an attack.

4 Meltdown Countermeasures

Meltdown attacks exploit deliberate incorrect behavior of the hardware
during transient execution. While this may have been assumed secure
in the past, it must be considered a hardware bug today. We first dis-
cuss applying Spectre-focused defenses to Meltdown attacks followed by
Meltdown-focused defenses.

The fundamental difference between Spectre and Meltdown type at-
tacks is based on the transient execution trigger, prediction or fault based,
respectively. Spectre-focused defenses that target Phases 1, 2, and 3 can-
not mitigate Meltdown attacks, as the attack runs entirely in the attacker
domain. Phase 4 defenses could be used with an additional performance

4. Meltdown Countermeasures 201

cost [11, 15, 32, 79, 97, 101]. For these defenses, it is important to not
just focus on cache accesses to guarantee mitigation of Meltdown attacks
but more broadly prevent operations from using non-architectural and
potentially secret data. Phase 5 defenses could be used to prevent or
unroll transient execution microarchitectural effects [1, 12, 34, 38, 51, 59,
61, 74, 76–78, 100]. However, mitigating the cache covert channel is not
sufficient to mitigate Meltdown attacks. Phase 6 defenses could be used
to break or slow down [21, 33, 65, 72, 81, 94, 95], or detect [28, 38, 58,
75] the covert channel. However, currently, none of these defenses can
guarantee the absence of Meltdown-usable covert channels.

4.1 Meltdown-Focused Defenses

Industry

As Meltdown attacks are considered to be a hardware bug, newer CPUs con-
tain patches. For instance, newer Intel CPUs contain fixes for
Meltdown-US, which have been reverse-engineered by Canella et al. [17].
They show that instead of returning data, access to privileged memory
now returns 0.

For SGX, Intel proposes to either store secrets in uncacheable memory
or to flush the L1 data cache when switching protection domains. Hy-
pervisors similarly flush the L1 upon context switches between untrusted
virtual machine threads. To prevent attacks from a VM running on a
hyperthread, hypervisors implement variants of gang scheduling [41, 64].
SGX takes the hyperthreading status into account for attestation for the
same reason. System Management Mode (SMM) rendezvous logical cores
and flushes the L1 upon context switches.

Meltdown-GP, i.e., transient reads of system registers, has been fixed
via a microcode update [44]. Newer ARM CPUs are also not vulnera-
ble to Meltdown-GP, whereas older ones can be protected via software
workarounds [8]. Meltdown-NM (Lazy-FP) [86], which exploited the lazy
switching of floating-point unit (FPU) registers, is mitigated by disabling
lazy switching.

Academia

The first software-based defense against Meltdown type attacks was
KAISER [36, 37], which removes the kernel mapping while running in
user space. Unfortunately, on x86, some privileged memory locations
must always be mapped in user space, and thus, can still be attacked [17].

202 Chapter 8. Evolution of Transient-Execution Defenses

KAISER was merged into Linux as kernel page-table isolation (KPTI) [23].
Other operating systems have received similar patches [35]. LAZARUS [6]
pursues a similar idea but uses unmapping and re-mapping of pages upon
context switching, which is problematic in multi-threaded applications.

Hua et al. [40] propose EPTI (Extended Page Table Isolation), a
variant of KPTI relying on extended page tables. As there is hardware
support for EPT switching and TLB entries from different EPTs are
tagged, e.g., with VM process IDs (VPIDs), the performance loss is not
as severe as with KPTI. However, as this approach uses extended page
tables, it leaves the system vulnerable to Meltdown-P. MemoryRanger [56]
isolates drivers, kernel and user space into separate address spaces using
EPTs.

To mitigate Meltdown-P (Foreshadow) on commodity systems, op-
erating systems now sanitize physical page-number fields of unmapped
page-table entries [41, 98] by setting the physical page-number field to
values that would refer to non-existent physical memory.

Finally, academic research shows how formal verification could more
generically prevent Meltdown bugs [15, 30].

5 LVI Countermeasures

LVI attacks exploit deliberate incorrect behavior of the hardware during
transient execution, similar to Meltdown. In contrast to Meltdown, LVI
attacks run in the victim domain and turn the Meltdown-type leakage
around into data injection. That is, the victim erroneously runs into
transient execution with the injected data values, similar to Spectre. In
contrast to Spectre, LVI attacks trigger the transient execution using
illegal data flows instead of misprediction. In principle, any data flow can
be attacked using LVI, which, based on the attacker’s capabilities, can be
every load operation in the victim.

Although LVI has similarities to both Meltdown and Spectre attacks,
unfortunately, the industry deployed countermeasures against Meltdown
and Spectre (silicon-level and microcode), are orthogonal to LVI attacks.
Specifically, Spectre defenses stop speculation around (branch) mispre-
dictions, while LVI defenses should stop speculation around all possible
illegal data flows (e.g., all loads in a program). Meltdown software and
microcode defenses which flush the microarchitectural structures after
victim execution [41] cannot mitigate LVI because LVI runs entirely within
the victim domain. Even silicon hardening against Meltdown attacks by
zeroing illegal data flows [47] do not fully eliminate the LVI threat [91].

6. Conclusion 203

Furthermore, applying defenses that target the covert channel that
leaks the secret outside the transient execution, Phases 4, 5, and 6, could
hinder LVI attacks. However, these defenses are limited, as we discussed
in Section 4.

5.1 LVI-Focused Defenses

Industry

Intel argues that LVI is not practical in non-SGX environments because
the attacker has limited ability to cause faults or assists in the victim
process in such environments [42]. Therefore, Intel updated the SGX SDK
(compiler and assembler-based mitigations) to enable LVI-resilient enclaves.
In contrast, hardware-based mitigations could ultimately address LVI’s
root cause by ensuring that there are no illegal data flows from faulting or
assisted loads to dependent instructions. In principle, mitigating specific
Meltdown attacks would provide implicit mitigation of the corresponding
LVI attacks.

Academia

To fully mitigate LVI attacks without hardware changes, serialization using
lfence instructions after possibly every illegal data flow, e.g., memory load,
is required [91]. However, the performance overheads of such mitigations
are prohibitive, and future work has to find better security-performance
trade-offs.

6 Conclusion

This paper shows a systematic evolution of defenses against transient-
execution attacks in both industry and academia since the initial discover-
ies of the attacks. We show that despite the advances in the understanding
and systematic view of the field, the proposed and deployed defenses are
limited.

Acknowledgments

This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and in-
novation program (grant agreement No 681402). This work has been
supported by the Austrian Research Promotion Agency (FFG) via the

204 Chapter 8. Evolution of Transient-Execution Defenses

project ESPRESSO, which is funded by the province of Styria and the
Business Promotion Agencies of Styria and Carinthia. Additional funding
was provided by generous gifts from ARM. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding parties.

References 205

References

[1] Sam Ainsworth and Timothy M Jones. MuonTrap: Preventing
Cross-Domain Spectre-Like Attacks by Capturing Speculative State.
arXiv:1911.08384. 2019.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garćıa, and Nicola Tuveri. “Port contention for fun
and profit.” In: S&P. 2019.

[3] AMD. AMD64 Technology: Speculative Store Bypass Disable. 2018.

[4] AMD. Software Techniques for Managing Speculation on AMD
Processor. 2018.

[5] Nadav Amit, Fred Jacobs, and Michael Wei. “Jumpswitches: restor-
ing the performance of indirect branches in the era of spectre.” In:
USENIX ATC. 2019.

[6] Orlando Arias, David Gens, Yier Jin, Christopher Liebchen, Ahmad-
Reza Sadeghi, and Dean Sullivan. “LAZARUS: Practical Side-
channel Resilient Kernel-Space Randomization.” In: RAID. 2017.

[7] ARM. ARM Architecture Reference Manual ARMv8. 2013.

[8] ARM. Cache Speculation Side-channels. 2018.

[9] Musard Balliu, Mads Dam, and Roberto Guanciale. InSpectre:
Breaking and Fixing Microarchitectural Vulnerabilities by Formal
Analysis. arXiv:1911.00868. 2019.

[10] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto,
Jason Reeves, Sean W Smith, and Anna Shubina. ELFbac: using the
loader format for intent-level semantics and fine-grained protection.
Dartmouth Technical Report, 2013.

[11] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu
Teodorescu. “Specshield: Shielding speculative data from microar-
chitectural covert channels.” In: PACT. 2019.

[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias
Payer, and Anil Kurmus. “Smotherspectre: exploiting speculative
execution through port contention.” In: CCS. 2019.

[13] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang,
and Srinivas Devadas. “MI6: Secure enclaves in a speculative out-
of-order processor.” In: MICRO. 2019.

206 Chapter 8. Evolution of Transient-Execution Defenses

[14] R Branco, K Hu, K Sun, and H Kawakami. Efficient mitigation of
side-channel based attacks against speculative execution processing
architectures. 2019.

[15] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and
Danilo Vendraminetto. “Model-Checking Speculation-Dependent
Security Properties: Abstracting and Reducing Processor Models
for Sound and Complete Verification.” In: Electronics (2019).

[16] Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. “The
Evolution of Transient-Execution Attacks.” In: GLSVLSI. 2020.

[17] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. “KASLR: Break It, Fix It, Repeat.”
In: AsiaCCS. 2020.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Transient
Execution Attacks and Defenses.” In: USENIX Security. Extended
classification tree and PoCs at https://transient.fail/. 2019.

[19] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre
variant1 mitigation). 2018.

[20] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang.
“Defeating Speculative-Execution Attacks on SGX with Hyper-
Race.” In: DSC. 2019.

[21] Chromium Projects. Actions required to mitigate Speculative Side-
Channel Attack techniques. 2018.

[22] Chromium Projects. Site Isolation. 2018.

[23] Jonathan Corbet. The current state of kernel page-table isolation.
2017.

[24] Microsoft Corp. 2019. url: https://support.microsoft.com/en-
us/help/4482887/windows-10-update-kb4482887.

[25] Sai Manoj P D, Sairaj Amberkar, Sahil Bhat, Abhijitt Dhavlle,
Hossein Sayadi, Avesta Sasan, Houman Homayoun, and Setareh
Rafatirad. “Adversarial attack on microarchitectural events based
malware detectors.” In: DAC. 2019.

[26] Jonas Depoix and Philipp Altmeyer. “Detecting Spectre Attacks by
identifying Cache Side-Channel Attacks using Machine Learning.”
In: WAMOS (2018).

https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

References 207

[27] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sand-
hya Dwarkadas. “Spectres, virtual ghosts, and hardware support.”
In: HASP. 2018.

[28] Swastika Dutta and Sayan Sinha. “Performance statistics and
learning based detection of exploitative speculative attacks.” In:
CF. 2019.

[29] R Earnshaw. Mitigation against unsafe data speculation (CVE-
2017-5753). 2018.

[30] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett,
Subhasish Mitra, and Wolfgang Kunz. “Processor hardware security
vulnerabilities and their detection by unique program execution
checking.” In: DATE. 2019.

[31] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Ed-
ward Suh. “HyperFlow: A processor architecture for nonmalleable,
timing-safe information flow security.” In: CCS. 2018.

[32] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard:
An Efficient Data-centric Defense Mechanism against Spectre At-
tacks.” In: DAC. 2019.

[33] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, and Zeyi Liu.
“AdapTimer: Hardware/Software Collaborative Timer Resistant to
Flush-Based Cache Attacks on ARM-FPGA Embedded SoC.” In:
ICCD. 2019.

[34] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste
Asanović. “Replicating and Mitigating Spectre Attacks on an Open
Source RISC-V Microarchitecture.” In: CARRV. 2019.

[35] Daniel Gruss, Dave Hansen, and Brendan Gregg. “Kernel isolation:
From an academic idea to an efficient patch for every computer.”
In: ; login: the USENIX Magazine (2018).

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. “Kaslr is dead: long live
kaslr.” In: ESSoS. 2017.

[37] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. “Prefetch side-channel attacks: Bypassing SMAP
and kernel ASLR.” In: CCS. 2016.

208 Chapter 8. Evolution of Transient-Execution Defenses

[38] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd
Austin, and Mohit Tiwari. “Cyclone: Detecting Contention-Based
Cache Information Leaks Through Cyclic Interference.” In: MICRO.
2019.

[39] Wei-Ming Hu. “Reducing timing channels with fuzzy time.” In:
Journal of computer security (1992).

[40] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang.
“EPTI: Efficient Defence against Meltdown Attack for Unpatched
VMs.” In: USENIX ATC. 2018.

[41] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018.

[42] Intel. Deep Dive: Load Value Injection. 2020.

[43] Intel. Intel 64 and IA-32 architectures software developer’s manual.
2019.

[44] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.

[45] Intel. Retpoline: A Branch Target Injection Mitigation. Revision.
2018.

[46] Intel. Side Channel Mitigation by Product CPU Model. 2020.

[47] Intel. Speculative Execution Side Channel Mitigations. 2018.

[48] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J Peter
Brady, Sergey Bratus, and Sean W Smith. “Ghostbusting: Miti-
gating spectre with intraprocess memory isolation.” In: HoTSoS.
2020.

[49] Khaled N Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Lei Yu. “RHMD: Evasion-resilient hardware malware detectors.”
In: MICRO. 2017.

[50] Khaled N Khasawneh, Nael B Abu-Ghazaleh, Dmitry Ponomarev,
and Lei Yu. “Adversarial Evasion-Resilient Hardware Malware
Detectors.” In: ICCAD. 2018.

[51] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. “Safespec: Banishing the spectre of a meltdown with
leakage-free speculation.” In: DAC. 2019.

[52] Russel King. Spectre-v2: harden branch predictor on context
switches. 2018.

References 209

[53] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. “DAWG: A defense against cache timing
attacks in speculative execution processors.” In: MICRO. 2018.

[54] Vladimir Kiriansky and Carl Waldspurger. “Speculative buffer
overflows: Attacks and defenses.” In: arXiv:1807.03757 (2018).

[55] Paul Kocher et al. “Spectre attacks: Exploiting speculative execu-
tion.” In: S&P. 2019.

[56] Igor Korkin. “Divide et Impera: MemoryRanger Runs Drivers in
Isolated Kernel Spaces.” In: arXiv:1812.09920 (2018).

[57] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled
N Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. “SPECCFI:
Mitigating Spectre Attacks using CFI Informed Speculation.” In:
arXiv:1906.01345 (2019).

[58] Congmiao Li and Jean-Luc Gaudiot. “Challenges in Detecting an
“Evasive Spectre”.” In: IEEE Computer Architecture Letters (2020).

[59] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
“Conditional Speculation: An effective approach to safeguard out-
of-order execution against spectre attacks.” In: HPCA. 2019.

[60] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security. 2018.

[61] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel
T King, and Christopher J Nitta. “Position Paper: A case for
exposing extra-architectural state in the ISA.” In: HASP. 2018.

[62] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. “Spectre is here to stay: An analysis of side-channels
and speculative execution.” In: arXiv:1902.05178 (2019).

[63] Avi Mendelson. “Secure Speculative Core.” In: IEEE SOCC. 2019.

[64] Microsoft. Microsoft Techcommunity. Hyper-V HyperClear Mitiga-
tion for L1 Terminal Fault. 2018.

[65] Microsoft. Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer. 2018.

[66] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
“Retrofitting Fine Grain Isolation in the Firefox Renderer.” In:
USENIX Security. 2020.

210 Chapter 8. Evolution of Transient-Execution Defenses

[67] Ejebagom John Ojogbo, Mithuna Thottethodi, and TN Vijaykumar.
“Secure automatic bounds checking: prevention is simpler than
cure.” In: CGO. 2020.

[68] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. “You shall not bypass: Employing data de-
pendencies to prevent bounds check bypass.” In: arXiv:1805.08506
(2018).

[69] Hamza Omar and Omer Khan. “IRONHIDE: A Secure Multicore
Architecture that Leverages Hardware Isolation Against Microar-
chitecture State Attacks.” In: arXiv:1904.12729 (2019).

[70] Tapti Palit, Fabian Monrose, and Michalis Polychronakis. “Miti-
gating data leakage by protecting memory-resident sensitive data.”
In: ACSAC. 2019.

[71] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM addressing for
cross-cpu attacks.” In: USENIX Security. 2016.

[72] Filip Pizlo. What Spectre and Meltdown mean for WebKit. 2018.

[73] Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site iso-
lation: process separation for web sites within the browser.” In:
USENIX Security. 2019.

[74] Simon Rokicki. “GhostBusters: Mitigating Spectre Attacks on a
DBT-Based Processor.” In: DATE. 2020.

[75] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A Adam Ding.
“SCADET: a side-channel attack detection tool for tracking Prime+
Probe.” In: ICCAD. 2018.

[76] Gururaj Saileshwar and Moinuddin K Qureshi. “CleanupSpec: An
“Undo” Approach to Safe Speculation.” In: MICRO. 2019.

[77] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jim-
borean, Stefanos Kaxiras, and Magnus Själander. “Ghost loads:
what is the cost of invisible speculation?” In: CF. 2019.

[78] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jim-
borean, and Magnus Själander. “Efficient invisible speculative ex-
ecution through selective delay and value prediction.” In: ISCA.
2019.

[79] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. “ConTExT: A Generic Approach
for Mitigating Spectre.” In: NDSS. 2020.

References 211

[80] Michael Schwarz, Moritz Lipp, and Daniel Gruss. “JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks.” In: NDSS. 2018.

[81] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic timers and where to find them: high-resolution
microarchitectural attacks in JavaScript.” In: FC. 2017.

[82] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. “Netspectre: Read arbitrary memory over network.”
In: ESORICS. 2019.

[83] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. “Restrict-
ing control flow during speculative execution.” In: CCS. 2018.

[84] Johannes Sianipar, Muhammad Sukmana, and Christoph Meinel.
“Moving Sensitive Data Against Live Memory Dumping, Spectre
and Meltdown Attacks.” In: 2018 26th International Conference
on Systems Engineering (ICSEng). IEEE. 2018.

[85] Ben Smith. Enable SharedArrayBuffer by default on non-android.
2018.

[86] Julian Stecklina and Thomas Prescher. “Lazyfp: Leaking
fpu register state using microarchitectural side-channels.” In:
arXiv:1806.07480 (2018).

[87] SUSE. Security update for kernel-firmware. 2018. url: https://www.
suse.com/support/update/announcement/2018/suse-su-20180008-

1.

[88] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen.
“Context-sensitive fencing: Securing speculative execution via mi-
crocode customization.” In: ASPLOS. 2019.

[89] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018.

[90] Eben Upton. Why Raspberry Pi isn’t vulnerable to Spectre or Melt-
down. 2018.

[91] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection.” In: S&P. 2020.

[92] Marco Vassena, Klaus V Gleissenthall, Rami Gökhan Kici, Deian
Stefan, and Ranjit Jhala. “Automatically eliminating speculative
leaks with blade.” In: arXiv:2005.00294 (2020).

[93] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Di-
estelhorst, Bashir M Al-Hashimi, and Geoff V Merrett. “BRB:
Mitigating Branch Predictor Side-Channels.” In: HPCA. 2019.

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1

212 Chapter 8. Evolution of Transient-Execution Defenses

[94] Luke Wagner. Mitigations landing for new class of timing attack.
2018.

[95] Han Wang, Hossein Sayadi, Tinoosh Mohsenin, Liang Zhao, Avesta
Sasan, Setareh Rafatirad, and Houman Homayoun. “Mitigat-
ing Cache-Based Side-Channel Attacks through Randomization:
A Comprehensive System and Architecture Level Analysis.” In:
DATE. 2020.

[96] Robert NM Watson, Jonathan Woodruff, Michael Roe, Simon W
Moore, and Peter G Neumann. Capability hardware enhanced RISC
instructions (CHERI): Notes on the Meltdown and Spectre attacks.
Tech. rep. 2018.

[97] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and
Baris Kasikci. “Nda: Preventing speculative execution attacks at
their source.” In: MICRO. 2019.

[98] Ofir Weisse et al. Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution. 2018.

[99] Wenjie Xiong and Jakub Szefer. “Survey of Transient Execution
Attacks.” In: arXiv:2005.13435 (2020).

[100] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher Fletcher, and Josep Torrellas. “Invisispec: Making
speculative execution invisible in the cache hierarchy.” In: MICRO.
2018.

[101] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W Fletcher. “Speculative Taint Tracking
(STT) A Comprehensive Protection for Speculatively Accessed
Data.” In: MICRO. 2019.

[102] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang,
Lixin Zhang, Xuehai Qian, and Dan Meng. “A Lightweight Isolation
Mechanism for Secure Branch Predictors.” In: arXiv:2005.08183
(2020).

9
Automating Seccomp Filter Generation

for Linux Applications

Publication Data

Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
“Automating Seccomp Filter Generation for Linux Applications.” In:
CCSW. 2021

Contributions

Main author.

213

214 Chapter 9. Automated Seccomp Filter Generation

Automating Seccomp Filter Generation for Linux
Applications

Claudio Canella
1
, Mario Werner

1

Daniel Gruss
1
, Michael Schwarz

2

1
Graz University of Technology, Austria

2
CISPA Helmholtz Center for

Information Security, Germany

Abstract

Software vulnerabilities undermine the security of applications. By block-
ing unused functionality, the impact of potential exploits can be reduced.
While seccomp provides a solution for filtering syscalls, it requires manual
implementation of filter rules for each individual application. Recent
work has investigated automated approaches for detecting and installing
the necessary filter rules. However, as we show, these approaches make
assumptions that are not necessary or require overly time-consuming
analysis.

In this paper, we propose Chestnut, an automated approach for gen-
erating strict syscall filters for Linux userspace applications with lower
requirements and limitations. Chestnut comprises two phases, with the
first phase consisting of two static components, i.e., a compiler and a bi-
nary analyzer, that statically extract the used syscalls. The compiler-based
approach of Chestnut is up to factor 73 faster than previous approaches
with the same accuracy. On the binary level, our approach extends over
previous ones by also applying to non-PIC binaries and thus a broader
set of applications. An optional second phase of Chestnut is dynamic
refinement to restrict the set of allowed syscalls further. We demonstrate
that Chestnut on average blocks 302 syscalls (86.5 %) via the compiler
and 288 (82.5 %) using the binary analysis on a set of 18 widespread ap-
plications. Chestnut blocks the dangerous exec syscall in 50 % and 77.7 %
of the tested applications using the compiler- and binary-based approach,
respectively. For the tested applications, Chestnut blocks exploitation of
more than 61 % of the 175 CVEs that target the kernel via syscalls. Our 6
month long-term study of a sandboxed Nginx server confirms correctness
and stability of our approach.

The original publication is available at https://www.usenix.org/
conference/usenixsecurity19/presentation/canella.

https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

1. Introduction 215

1 Introduction

The complexity of applications is steadily growing, and with that, also the
number of vulnerabilities found in applications [38]. A consequence is that
the attack surface for exploits is also growing. Especially in applications
written in memory unsafe languages such as C, bugs often lead to memory
safety violations that potentially enable exploits [59]. Even with state-of-
the-art defenses, a risk remains that an attacker can exploit a remaining
vulnerability in an application. For privileged applications such as setuid
binaries, this can, in the worst case, fully compromise the entire system.

The remaining exploitation risk can be addressed by reducing the
post-exploitation impact (cf. principle of least privilege). With available
resources and interfaces limited to those strictly required by the application,
a successful exploit cannot use arbitrary other functionality [34]. Especially
blocking dangerous syscalls and syscall parameters that are not required by
many applications, e.g., the exec syscall to execute a new program, reduces
an attacker’s possibilities in the post-exploitation phase. Application
sandboxing limits the resources available to an application [22, 44] and,
ideally, untrusted and potentially malicious, or benign but compromised
applications cannot escape the sandbox.

On Linux, seccomp [15] and the extended seccomp-bpf can be used by
applications to restrict the syscall interface. Seccomp-bpf [15] supports
developer-defined filter rules. Each syscall can be blocked entirely or
specific arguments for it. However, the correct usage of seccomp-bpf
requires the developer to know which syscalls are used by the application
and the included libraries. Given the considerable effort, seccomp is mainly
used in applications that provide isolation mechanisms, e.g., sandboxes [26,
50].

Recent works proposed two methods to automatically generate such
seccomp filters [11, 20]. The first approach utilizes the compiler and various
external tools to derive the filters during compilation [20]. To minimize the
set of syscalls, the approach relies on sophisticated points-to analysis [2]
to generate a call graph of reachable functions and syscalls. The second
approach relies on binary analysis to determine the syscalls an existing
binary intends to use [11]. While these are first solutions to the problem
of automating filter generation, both come with clear limitations. For
instance, the first approach does not scale with the program size due to the
points-to analysis [2, 24]. In practice, the overheads can be prohibitively
large as they would require a massive upscaling of development and build
server resources. The second approach comes with a strong requirement

216 Chapter 9. Automated Seccomp Filter Generation

that the application is compiled as a position-independent code (PIC)
binary (PIE) [11]. While PIE is the default on recent Ubuntu distributions
for C and C++ compiled programs, static C and C++ binaries are by
default not compiled as PIE. Other compiled binaries are often not PIE
either, e.g., ‘golang’ binaries such as the popular git server Gogs, which
are not supported by these previous works. Both limitations reduce the
set of applications that can be protected with these solutions substantially.

In this paper, we present a novel approach that overcomes the limita-
tions of previous ones and automatically generates strict seccomp filters
for native Linux userspace applications. We show that our approach is a
significant improvement over the compiler-based approach by Ghavam-
nia et al. [20] without the expensive points-to analysis to generate filter
rules. Instead, a faster has address taken approach achieves the same
accuracy but at a fraction of the performance impact on compilation time.
In contrast to DeMarinis et al. [11], we demonstrate that the requirement
of a PIC binary is not necessary, significantly extending the set of tar-
get applications. We implement our method in a proof-of-concept tool,
Chestnut.

1

Chestnut uses a two-phase process: A static first phase P1 consisting
of two static components (Sourcalyzer and Binalyzer), and an optional
dynamic second phase P2 (Finalyzer). Using static analysis, Chestnut
first identifies unused syscalls without running the application in P1 and
dynamically refines this set in P2 to reduce the inherent limitations of
the static analysis in P1.

For Sourcalyzer, we extend the LLVM framework to detect the
syscalls used by the application already during compile- and link-time.
The syscall information for each shared library is either extracted using the
compiler or using Binalyzer. Binalyzer can be used for applications and
libraries which are either not compatible with LLVM or where the source
code is not available. We rely on capstone [47] to disassemble applications
and to locate syscalls. Using symbolic backward execution [36] from the
syscall instruction, we infer the syscall number used in the identified
syscall. Additionally, we use the control-flow graph (CFG) recovery
functionality of angr [64] to map exported functions to identified syscalls.
Exactly as in previous work, an inherent limitation of static approaches is
that they can miss syscalls in rare cases if control-flow cannot be inferred
correctly. However, we observe that more frequently, the set of used
syscalls is overapproximated. To refine the number of allowed syscalls, we

1
The prototype and several demo videos can be found in our anonymous GitHub

repository https://github.com/chestnut-sandbox/Chestnut.

https://github.com/chestnut-sandbox/Chestnut

1. Introduction 217

provide a complementary optional dynamic approach in the second phase
of Chestnut. In this second phase, Finalyzer traces all syscalls of the
application and then refines the allowlist to further restrict or relax the
seccomp filters.

We demonstrate our approach’s feasibility by applying it to various real-
world client applications, such as git and busybox, database applications,
such as redis and sqlite3, and Nginx as a server application. We show that
Chestnut does not impair their functionality but significantly reduces the
attack surface. On average, Chestnut blocks 295 syscalls (84.5 %) on Linux
kernel 5.0. In the 18 real-world binaries we evaluated, Chestnut blocked the
exec syscall for 50 % of the applications using Sourcalyzer and in 77.7 %
using Binalyzer. We block the mprotect syscall in 61.1 % of the tested
applications using Sourcalyzer. Furthermore, we evaluate our approach on
real-world exploits, showing that Chestnut blocks exploitation of 64 % and
62 % of CVEs using Sourcalyzer and Binalyzer, respectively. We compare
our approaches with related previous work [11, 20] and show that we are
similarly effective in mitigating CVEs via compiler-based approaches [20].
However, we improve the performance by up to factor 73. In contrast to
previous work [11], we show that binary-based approaches can also be
applied to non-PIC binaries. We evaluate the functional correctness of
Sourcalyzer with test suites as well as a 6-month long-term case study of
a Sourcalyzer-protected Nginx production server. Furthermore, we are
the first to evaluate how tight automatically generated filter rules are by
relying on available test suites. We also advance the state of the art in
evaluation of automatic syscall filtering, with a long-term case study and
by measuring code coverage to confirm our approach’s validity.

Filters generated automatically with a tool might not always be as
strict as theoretically possible. However, there is no time investment
required by the developer, making it a very inexpensive defense in depth.
More importantly, Chestnut can be applied to and improve the security
of existing and widely-used technology, i.e., seccomp, making syscall
filtering available to commodity applications. The only runtime overhead
introduced is the small overhead of using seccomp, similar as containers
already do today.

To summarize, we make the following contributions:

1. We present a new compiler-based approach for automated syscall-filter
generation, up to 73x faster than previous work.

2. We present a dynamic method to refine the filters.
3. We show that Chestnut blocks the exploitation of more than 61 % of

the 175 CVEs in the Linux kernel exploitable via syscalls.

218 Chapter 9. Automated Seccomp Filter Generation

4. We show that previous requirements can be lifted and show that our
approach can be applied to PIC and non-PIC binaries.

5. In a 6 month long-term study on Nginx, we demonstrate the correctness
of our approach and do not observe a single crash.

Outline. Section 2 provides background, Section 3, threat model,
and design of Chestnut. Section 4 discusses our static and Section 5 our
dynamic approach. We evaluate Chestnut in Section 6 and discuss related
work and limitations in Section 7. Section 8 concludes.

2 Background

Sandboxing is a security mechanism that constrains software within a
tightly controlled environment by restricting the available resources to a
required minimum [22, 44]. Hence, the damage in case of exploitation is
limited. These restrictions may encompass the ability to access the network,
limit the amount of storage, file descriptors, or inhibit the application
from issuing specific syscalls. By now, different forms of sandboxing have
been adopted by many browser vendors to secure their products [43, 49,
58, 66].

2.1 Linux Seccomp

To facilitate operations that require higher privileges or direct hardware
access, the kernel provides syscalls to every userspace application. As with
other interfaces, they also contain bugs that can lead to privilege escala-
tion [30–32]. Hence, platform security profits from limiting the amount
of syscalls that an application can perform. With Secure Computing
(seccomp) [15], Linux provides a filter that allows a userspace program to
specify the syscalls it performs over its lifetime. The kernel then blocks
the remaining syscalls for the sandboxed application that might originate
from an application being hijacked. As seccomp filters do not dereference
pointers, so-called time-of-check time-of-use attacks [37] common in syscall
interposition frameworks are not possible. Examples of applications that
rely on seccomp are Chromium [9], Firefox [40], and the zygote process in
Android systems [27].

2.2 Memory Safety

Memory safety is an essential concept in computer security, and its vi-
olation can lead to exploitation. One way to exploit a program is to

3. Design of Chestnut 219

corrupt its memory and to divert control flow to a previously injected
code sequence. This code sequence, i.e., the payload, is called shellcode
and is commonly written in machine code. These types of attacks are
commonly known as control-flow hijack attacks [59].

ROP attacks [53] allow chaining existing code gadgets within an appli-
cation to perform malicious tasks. Each gadget is a sequence of instructions
ending with a return instruction. ROP attacks are hard to defend as all
the information is already present within the application, i.e., an attacker
does not need to inject code. While ROP attacks overwrite saved return
addresses, similar attacks exist that overwrite other pointers [4, 6, 7, 21,
51] or signal handlers [5].

2.3 Executable and Linkable Format

On Unix-based systems, the highly flexible and extensible Executable and
Linkable Format (ELF) [13] is used for shared libraries and executables.
ELF files consist of header and data, including a program and a section
header table for segments and sections. Segments contain information for
the run-time execution of the binary, while sections contain information
for linking and relocating.

Dynamic Linking. The dynamic linker is responsible for loading and
linking shared libraries used by an executable during runtime [13]. For that,
the dynamic linker maps the shared library’s content into memory and
ensures its functionality, e.g., filling jump tables and relocating pointers.
On Unix-like systems, the dynamic linker is selected at link time and is
embedded into the ELF file.

3 Design of Chestnut

In this section, we introduce our threat model, outline challenges of
automatic filter generation, and discuss the high-level idea of Chestnut.
We introduce the main components of Chestnut (Figure 9.1), i.e., the
compiler modification Sourcalyzer, the binary analyzer Binalyzer, and the
dynamic refinement tool Finalyzer.

3.1 Threat Model and Idea of Chestnut

Chestnut supports Linux applications available as either C source code or
as a binary, and is not limited to PIC binaries as previous work [11]. These
applications can range from server applications to applications executing

220 Chapter 9. Automated Seccomp Filter Generation

P1: Static Analysis

Source

Binary

Annotated
Binary
File(s)

Source
Analyzer

Binary
Analyzer

P2: Dynamic Refinement

Dynamic
Analyzer Annotated

Binary
File(s) Chestnut

Generator

Chestnut
Patcher

Sandboxed
Binary

Wrapped
Binary

or

Figure 9.1: Chestnut consists of P1, a static analysis on source and binary files,
and an optional dynamic analysis, P2, refining the filters. Chestnut
can either rewrite the binary or generate a tailored sandbox to
block unused syscalls.

potentially malicious code that is not controlled by the user, such as
browsers, office applications [41], and pdf readers [16, 17]. Chestnut can
also restrict the syscall interface of messenger applications which have
been used to compromise systems [23, 54]. We assume correct usage of
Chestnut in one of its variants (cf. Figure 9.1). Chestnut assumes that
the application is not malicious but potentially vulnerable to exploitation,
e.g., due to a memory-safety violation, enabling an attacker to gain
arbitrary code execution within the application. We assume that post-
exploitation requires syscalls, e.g., to gain kernel privileges. Syscalls
provided for file operations can potentially be hijacked by an attacker
to modify configuration files. Argument-level API specialization [39] can
be used to protect against such attacks. We consider this an orthogonal
problem, in line with related work [20], and do not consider such attacks.
Chestnut is orthogonal to other defenses such as CFI, ASLR, NX, or
canary-based protections and enhances the security in case these other
mitigations have been circumvented. Side-channel and fault attacks are
out of scope.

3.2 Challenges

Automatic filter generation using a static approach requires solving the
following four challenges that we detail in Sections 4 and 5.

C1: Identifying Syscall Numbers for each Syscall. To automatically
block unused syscalls, we must identify the syscalls used by the application.
The syscall itself is usually a single instruction, e.g., syscall (x86 64) or
svc #0 (AArch64). The actual syscall is specified as a number in a CPU
register, e.g., rax (x86 64) or x8 (AArch64) [12]. Hence, the first challenge
is to identify the syscall number for a specific syscall. Syscalls have many

3. Design of Chestnut 221

different forms within a program, e.g., inline assembly, assembly file, or
issued with the libc syscall wrapper function. Moreover, syscalls might
not be called directly, but via a call chain through various libraries.

C2: Reconstruct Call Sites of Syscalls. By solving challenge C1,
we know which syscalls are potentially called by the target application.
Unfortunately, including all detected syscalls of the binary and the used
libraries does not suffice. Most binaries link against libc, which provides
an implementation of almost all syscalls. Hence, the generated filters
would be too permissive as they would basically allow all syscalls. We
have to analyze the reachability of the identified syscalls by constructing
a call graph for every binary.

C3: Generate Set of Syscalls. To generate the final set of syscalls for
our application, the information from C1 and C2 has to be combined for
the application and its libraries. By combining the call graph obtained in
C2 with the information which functions are used in the application and
libraries, we create a set of functions potentially called by the application.
In combination with the call graph (C2) and syscall numbers (C1), this
set provides the information about all the syscalls that the application
can execute.

C4: Install Filters. Our library (libchestnut) relies on seccomp to
apply the syscall filters. This library uses the allowlist (C3), generates the
seccomp rules, and installs the resulting filters before the actual application
starts at the main entry point.

3.3 High-Level Idea

This section discusses how the components of Chestnut solve the challenges,
with the implementation details in Sections 4 and 5.

Sourcalyzer. Sourcalyzer is the compiler-based component of Chestnut
for static analysis of the application source code. It is a compiler pass in
LLVM that identifies all syscalls at compile time.

For statically linked applications, and given that libraries are compiled
with Sourcalyzer, the compiler and linker are aware of the entire codebase
and can thus identify every syscall instruction of the final binary. As the
C standard library implements almost all syscalls, linking against it would
allow almost all syscalls, which renders the filters ineffective. Hence, we
need to determine further which syscalls are used by the application by
analyzing the CFG to solve challenges C2 and C3. While comparable
work [20] needs to perform the same task, we demonstrate a solution that
is up to factor 73 faster. We discuss this in Section 4.1.

222 Chapter 9. Automated Seccomp Filter Generation

Binalyzer. Sourcalyzer requires the source code of the application and
all used libraries. Binalyzer has the same goal but works directly on the
binary level. With this, our approach is also applicable to programs where
the source code is not available or not compatible with LLVM, retrofitting
the approach to binaries. In contrast to previous work [11], Binalyzer is
not restricted to PIC binaries.

The idea is to scan binaries and libraries for syscall instructions
and use symbolic backward execution [36] from these locations to infer
the respective syscall number, again solving challenge C1. To reduce
overapproximation, Binalyzer leverages CFG analysis of all dependencies
to map exported functions to syscall numbers (C2, C3). Binalyzer also
works on stripped binaries as all the required information is still included
for dynamic linking.

Finalyzer. Working around limitations of static analysis, we propose
an optional dynamic phase, Finalyzer, based on syscall tracing, removing
or adding filters that cannot be identified statically. Finalyzer is solely
intended to refine filters identified by our static approaches in a controlled,
benign environment.

The dynamic nature of Finalyzer allows simplifying challenges C1
to C4. Finalyzer extracts the syscall number during runtime (C1) by
intercepting all syscalls for the target application. By intercepting the
syscall, it is inherent that the syscall is reachable (C2). In this step, missed
syscalls are added to refine the installed filter list (C4). We discuss this
process in more detail in Section 5.

Combining Components. Chestnut is designed to allow combining
all three components (cf. Figure 9.1). For instance, Finalyzer is intended
to be used as an optional step after the static components if they cannot
infer the used syscalls due to the static analysis’s limitations. An instance
where this is necessary is when an application dynamically starts other
applications. The child process inherits the parent’s filters, which cannot
be relaxed anymore. By combining the static approaches with Finalyzer,
the syscalls of the child process are identified and added to the application’s
allowlist. Sourcalyzer can also be used in combination with Binalyzer,
e.g., if the source is available for the application but not for a used library.

Applying Syscall Filters. The output of each component is a set of
syscalls the application can call. For Sourcalyzer, the syscall filters are
directly compiled into the target application. However, if this is either not
desirable or possible, e.g., because only the binary is available, we provide
two tools to apply the syscall filters (cf. Figure 9.1). ChestnutGenerator
creates a sandbox tailored to the target application. Alternatively, Chest-

4. Static Filter Extraction 223

Sources

Extract
System
Call

Number

Build
Call
Graph

Annotated
Binary
File(s)

Libraries

Generate
System
Call List

Annotated
Exe-

cutable

Install
Filters

Figure 9.2: The different steps of Sourcalyzer, which starts with the source and
ends with a fully sandboxed application.

nutPatcher directly patches the target application to include the syscall
filters and libchestnut.

4 Static Filter Extraction

We now present the two static approaches of P1 to automatically generate
syscall filters. We highlight the necessary steps, cf. Figure 9.2, for solving
the outlined challenges in a fast and efficient way in both a compiler and
a binary-based approach in more detail.

4.1 Compiler-Based Approach

Sourcalyzer utilizes the LLVM compiler framework [33] to extract syscalls
from source code. It uses module passes (i.e., one analysis and one transfor-
mation pass) that operate on the LLVM intermediate representation (IR).
Additionally, LLVM’s linker lld is extended to combine the extracted infor-
mation from multiple translation units. We use an unmodified compiler-rt
and musl libc. Hence, using Chestnut with the Sourcalyzer approach
is as simple as compiling and linking an application with our extended
toolchain.

C1: Identify System Call Numbers. To invoke a syscall, x86 64
provides the syscall and AArch64 the svc #0 instruction. The extraction
of the syscall number is the only architecture-dependent part of Chestnut.
Given the syscall number, the rest of the approach is the same for all
architectures supported by LLVM. Syscalls are typically abstracted by the
standard C library via the syscall() function. musl additionally provides
the function syscall cp(). To detect all invocations of syscalls, we need
to detect all three cases, i.e., inline assembly, the syscall function, and
the syscall cp() function.

224 Chapter 9. Automated Seccomp Filter Generation

The LLVM analysis pass iterates over all functions within a translation
unit. For each function, we iterate over every LLVM IR instruction to
check whether it is a call site. If it is, we check whether it is an inline syscall
assembly statement or a call to either one of the syscall or syscall cp
functions. In all three cases, we extract the first argument as it is the
number of the requested syscall. Due to the way we traverse the IR, we
also know precisely what function performs the respective syscall.

Our proof-of-concept implementation currently does not parse assembly
files as they are treated differently by LLVM than normal source files.
Hence, if a syscall is implemented in one, e.g., clone, we cannot detect it,
but a full implementation can handle this case.

C2: Reconstruct Syscall Call Sites. Sourcalyzer uses the syscall
numbers extracted in C1 as a starting point for further analyzing which
syscalls are used based on the call graph. The main challenge here is
extracting a reasonably precise call graph without inducing huge perfor-
mance overheads or by requiring changes to the common compilation
model (e.g., by demanding link-time optimization (LTO)). In particular,
restricting indirect function call sites to a set of possible call targets is
a necessary, but typically quite expensive, task that commonly relies on
inter-procedural pointer analysis (e.g., Andersen [2], Steensgaard [57]).
This type of analysis requires access to the whole program and often
does not scale efficiently to larger program sizes [2, 24]. An automated
syscall-detection system based on this form of analysis and its impact on
the compile-time performance has been demonstrated by Ghavamnia et al.
[20]. This approach also requires changes to the common compilation
model, which is not supported by every application.

Hence, as we want to avoid changes to the compilation model and
given that our application can tolerate some imprecision, we do not use
sophisticated pointer analysis in our prototype implementation and opt
for a function-signature based heuristic to determine possible call targets.
Every function in the program where the function type of the call site
matches the function type of the definition is considered a possible call
target. For correctly typed programs, this heuristic is an overapproxima-
tion of the actual possible call targets, which corresponds to permitting
more syscalls than are actually needed (cf. Section 6.4).

Both the LLVM IR passes and the linker are involved in mapping
syscall numbers to functions. Our analysis pass traverses over all defined
functions within the module. It extracts function signature, direct and
indirect function calls, and functions referenced in the code (for which
function pointers exist, i.e., functions that have their address taken). The

4. Static Filter Extraction 225

latter is similar to what LLVM uses for software-based CFI. This gives
rise to the assumption that the resulting call graph is precise enough
as applications that use software-based CFI would otherwise not work
correctly.

We perform our analysis in the same traversal in which we locate
the used syscall numbers (see C1). We also support function aliases by
treating them as copies of the original function. Finally, references to
functions in global initializers are extracted, as they are used, e.g., for
global file structures.

Our IR transformation pass stores the information collected from the
analysis pass in the ELF object for the linker to use.

C3: Generate Syscall Set. By solving challenges C1 and C2,
we generate object files containing the serialized syscall and call graph
information. The linker extracts this information from all the provided
input files to perform the actual call graph construction and syscall number
propagation. Finally, the linker can either generate the set of relevant
syscalls for the application or a flattened call graph for further processing.

In more detail, after loading the call graph metadata, all reachable
functions are resolved according to their symbol’s linkage specification (e.g.,
local or global, strong or weak), and a list of indirect callable functions is
generated. In the next step, a call graph is constructed in which each node
represents a function, and each directed edge represents a possible control-
flow transfer from the caller to the callee. The linker transforms this call
graph into a directed acyclic graph (DAG) using Tarjan’s algorithm [60],
enabling efficient propagation of the information. Namely, each graph
node has to be updated only once by visiting the DAG in post-order. Using
the discovered strongly coupled components, circular call dependencies
are directly resolved by merging the information from all functions that
are part of the respective cycle in the original call graph. As a result, the
linker has access to a flattened call graph in which, for every function, all
reachable syscall numbers are known.

With the flattened call graph, we determine which syscalls our final
application needs. For a static binary, we extract all syscalls that can be
reached from the main and the exit function and embed them as a simple
list of numbers into the final ELF binary. For dynamic binaries or shared
libraries, we instead embed the flattened call graph into the linked binary
for further processing.

C4: Install Seccomp Filters. After linking with Sourcalyzer, the
binary contains annotations for the application’s used syscall numbers
directly or its flattened call graph that still needs to be combined with the

226 Chapter 9. Automated Seccomp Filter Generation

mov $0x1, %bl
xor %edi, %edi
mov %ebx, %eax
lea 0xf(%rip), %rsi
mov $0xd, %edx
syscall rax = ?

rax = ?
rax = ?
rax = rbx = ?
rax = rbx = ?
rax = rbx = $0x1

Figure 9.3: Symbolic backward execution starts from the syscall instructions
and finds the syscall number by symbolically tracking the corre-
sponding CPU register.

additional dynamic libraries. For static linkage, we delegate the processing
to the application itself by additionally linking against our libchestnut
library. This library contains a constructor that extracts the syscall
numbers and installs the seccomp filters using libseccomp [14] before the
application starts executing.

In the second case, dynamic linkage, we provide two options. Chest-
nutPatcher extracts the embedded call graph from all library dependencies
and determines all syscalls from functions that are reachable from the
main and exit function. Finally, the tool adds a new note section with
information on syscall numbers. As the compiler has generated the dy-
namic binary, we can already link libchestnut against it automatically.
ChestnutGenerator performs the same steps except that it does not modify
the binary but creates a launcher that sets up the filters before executing
the actual binary.

4.2 Binary Syscall Extraction

The second static approach of Chestnut, Binalyzer, works on the binary
level. With less semantic information available than on the compiler level,
Binalyzer works without access to the source code and even for stripped
binaries. In contrast to previous work [11], we demonstrate our approach
on PIC and non-PIC binaries.

C1: Identify Syscall Numbers. The syscall number is not encoded
in the instruction but is provided in a register, i.e., rax on x86 64 or x8

on AArch64. Hence, Binalyzer has to reconstruct the syscall number by
inferring the content of this register.

Binalyzer uses the capstone framework [47] to disassemble a binary as
this framework supports various ISAs, e.g., x86 64 and AArch64. Starting

4. Static Filter Extraction 227

from a syscall instruction, Binalyzer leverages symbolic backward execu-
tion [36]. Tracking back from the syscall instruction, Binalyzer tracks the
register’s symbolic value containing the syscall number. In many cases, the
immediate for the syscall number is directly moved to the register before
the syscall instruction as it is a constant value. However, in some cases,
there is at least some form of register-to-register transfer involved. These
transfers also include register copies where only a lower part of the register
is involved. Thus, as illustrated in Figure 9.3, Binalyzer keeps the content
of the register symbolic and steps back through the binary, symbolically
evaluating operations. This symbolic backward execution is repeated
until either a concrete immediate for the syscall number is identified, or
after a user-definable number of instructions have been analyzed without
successfully identifying the immediate.

1
One failure reason can be that

the syscall instruction is a call or jump target, i.e., there are potentially
multiple call sites reaching the instruction with different syscall numbers.
Luckily, the syscall instruction is usually inlined, and thus, we do not
consider such situations for our proof of concept.

C2: Reconstruct Syscall Call Sites. To reduce the overapproxima-
tion of syscalls, Binalyzer analyzes the CFG to map syscalls to (exported)
functions. We rely on angr [64] to statically create a CFG of the binary.
Based on the basic blocks of all functions in the CFG, we assign every
syscall identified in C1 to a function. Binalyzer traverses the CFG from
each exported function as the root node to identify reachable functions
with a syscall instruction. Assuming a correctly reconstructed CFG from
angr and correctly identified syscall numbers (C1), this yields a set of
possible syscalls per exported function.

C3: Generate Syscall Set. To solve challenge C3, we have to
combine the information created from solving C2 for all binaries, i.e., the
application binary and all of its libraries. We cannot create a complete
CFG over the application binary and its libraries as this would take
multiple hours to days, depending on the size of the application and the
number of dynamic libraries. Instead, we chose to overapproximate the
number of possible syscalls by relying on individual CFGs that we merge.
We only consider functions that are defined in the dynamic symbol table
of the ELF file. These functions are found in the dynamic libraries loaded
by the application. Hence, we search for these functions in the shared
object dependencies and look up the used syscalls for the function in the
respective library. As shared libraries can also have a dynamic symbol

1
For the evaluation, we set this number to 30, which was sufficiently large.

228 Chapter 9. Automated Seccomp Filter Generation

table if they call functions from other libraries, this process is repeated
for all dynamic symbols of all shared object dependencies.

Solving challenge C3 yields a set of syscalls that the application can
potentially call. This assumes that no dynamic libraries are loaded at
runtime, e.g., via dlopen, and that the application does not execute a
different binary at runtime, e.g., via exec. In such cases, we need to resort
to P2 as the complete set of syscalls cannot be determined statically.

C4: Install Seccomp Filters. From the full set of syscalls, Binalyzer
has to create filter rules and apply them to the binary. We cannot simply
compile the filters with the application (cf. Sourcalyzer). Instead, Binalyzer
supports binary rewriting or alternatively building a sandbox wrapper (cf.
Figure 9.1). ChestnutGenerator is a simple tool that sets up the filter
rules and starts the target program.

With binary rewriting, Binalyzer stores the syscall numbers in the
ELF binary and injects a new shared object dependency, libchestnut. The
library provides a constructor function, which is called before the actual
application starts and which parses the filters stored in the binary to apply
the seccomp filter rules. The advantage of a rewritten binary is that it
does not need any launcher.

5 Dynamic Refinement

In this section, we discuss the optional P2 component Finalyzer, a
method to dynamically refine the previously detected syscall filters. It
simplifies the challenges C1 to C4 by inspecting syscalls just-in-time in a
secure and controlled environment during development.

5.1 Limitations of Static Approaches

While our approach for statically detecting an application’s syscalls works
well for most binaries (cf. Section 6), there are inherent limitations to
a static approach. Dynamically loaded libraries, e.g., codecs, plugins,
self-modifying, or JIT-compiled code, often cannot be analyzed statically.
Moreover, seccomp is not flexible enough to handle scenarios involving
child processes with a different set of syscalls, as a child inherits its parent’s
filters and can only further restrict but not relax them. Hence, the parent
also needs to install filters for the child’s syscalls.

5. Dynamic Refinement 229

Kernel

System Call

notify

System Call

Tracer

allow

return

Log
Syscall

Tracee

Trace

Figure 9.4: The tracer gets notified by the kernel when the tracee executes
a syscall. The tracer logs the syscall and informs the kernel to
execute the syscall.

5.2 Implementation Details

In our prototype, Finalyzer is an strace-like syscall-tracing component
linked against the target application or used as a standalone wrapper for a
binary (cf. Figure 9.1). This allows Finalyzer to work with Binalyzer and
Sourcalyzer. If desired, it can also be used without the static components
to identify required syscalls.

In either case, Finalyzer, i.e., the tracer, first creates a child process,
the tracee. Finalyzer then installs seccomp filters for all syscalls in a
way that informs the tracer about a seccomp violation. To enable this
behavior, the tracer needs to attach itself to the tracee. The tracee then
stops execution until it receives the continue signal from the tracer to
ensure that it successfully attached itself. If the child process creates
a new child process, the tracer is automatically attached to the newly
created child process. The tracer is then also informed of the unsuccessful
execution of the child’s syscalls.

When receiving the notification of a violating syscall, Finalyzer extracts
the syscall number (C1), logs it (C3), and allows it for all future occurrences
(cf. Section 3.3), as illustrated in Figure 9.4. As the syscall is indeed
executed, it is inherent that it is reachable (C2).

Once Finalyzer has finished tracing the application, it cross-references
the set of obtained syscalls with the ones obtained in P1. If a syscall is
missing, it adds the newly detected syscall to the allowlist. Optionally,
it can also be used to remove syscalls that P1 identified but which were
never executed during P2.

230 Chapter 9. Automated Seccomp Filter Generation

6 Evaluation

In this section, we evaluate the performance, functional correctness, and
security of Chestnut. Our evaluation is in line with related work [11, 20]
while improving on it in several points, i.e., we evaluate several parts that
were not yet evaluated in these works. In the performance evaluation,
we evaluate the one-time overheads of Chestnut, such as compile time
and binary-analysis time. We also discuss the runtime overhead seccomp
introduces. For the functional correctness, we evaluate whether Chestnut
causes any issues in terms of functionality of existing real-world software,
e.g., crashes. We also perform a 6-months long evaluation of an Nginx
server with its syscall interface restricted by Sourcalyzer. In the security
evaluation, we evaluate the ability of Chestnut to block the dangerous exec
syscall and the overapproximation of syscalls in general. With the latter,
we are the first to demonstrate how tight the automatically generated
filters are. Furthermore, we evaluate how well Chestnut can mitigate
real-world exploits. Finally, we detail differences between our work and
related works in this field.

6.1 Setup

For the evaluation of Chestnut, we focus on x86 64. Note that the
only architecture-dependent part of Chestnut is the extraction of the
syscall number. Hence, we do not expect significant differences for other
architectures. We also verified that the general approach works across
architectures by successfully extracting the syscall numbers from musl
libc for both x86 64 and AArch64.

We evaluate Chestnut on various real-world applications
(cf. Table 9.1), including client, server, and database software. While
busybox may be seen as a non-obvious choice, it is in line with previous
work that used coreutils for the evaluation [46]. We instead chose busybox
as the number of provided utilities is 3 times higher, making it a better
choice for our evaluations. For evaluating Sourcalyzer, we compile the
binaries statically with and without Chestnut enabled using our modified
compiler. For Binalyzer, we compile the applications dynamically using
GCC 7.5.0-3 on Ubuntu 18.04.4. For the sake of brevity, we do not evaluate
every combination of components and sandboxes but focus on libchestnut
for Sourcalyzer and ChestnutGenerator for Binalyzer.

6. Evaluation 231

T
a
b

le
9
.1

:
R

es
u

lt
s

fo
r

th
e

co
m

p
il

er
-

(
)

a
n

d
b

in
a
ry

-b
a
se

d
(

)
a
p

p
ro

a
ch

o
f

C
h

es
tn

u
t,

re
sp

ec
ti

v
el

y.
W

e
sh

ow
th

e
n
u

m
b

er
o
f

d
et

ec
te

d
sy

sc
al

ls
in

P
1

,
u
se

d
sy

sc
al

ls
,

an
d

ad
d
ed

sy
sc

al
ls

in
P

2
,

th
e

si
ze

ov
er

h
ea

d
of

th
e

an
n
ot

at
io

n
s,

co
m

p
il
e-

ti
m

e
ov

er
h
ea

d
(f

o
r

S
o
u
rc

a
ly

ze
r)

,
a
n
d

b
in

a
ry

a
n
a
ly

si
s

ti
m

e
(f

o
r

B
in

a
ly

ze
r)

.
T

h
e
e
x
e
c

a
n
d
m
p
r
o
t
e
c
t

co
lu

m
n
s

in
d
ic

a
te

w
h
et

h
er

C
h
es

tn
u
t

b
lo

ck
s

(3
)

th
e

re
sp

ec
ti

v
e

sy
sc

a
ll
s

o
r

n
o
t

(8
).

W
e

a
ls

o
sh

ow
th

e
p

er
ce

n
ta

g
e

o
f

fu
ll
y

m
it

ig
a
te

d
C

V
E

s
an

d
th

e
in

d
iv

id
u
al

su
b
va

ri
an

ts
.

S
y
sc

al
ls

ad
d
ed

in
P

2
ar

e
on

ly
n
ec

es
sa

ry
fo

r
ed

ge
ca

se
s

in
ou

r
p
ro

of
-o

f-
co

n
ce

p
t

im
p

le
m

en
ta

ti
on

of
C

h
es

tn
u

t.

S
o
ft

w
a
re

#
S

y
sc

a
ll

s
F
o
u

n
d

/
U

se
d

/
P

2
A

d
d

e
d

S
iz

e
O

v
e
rh

e
a
d

A
n

a
ly

si
s

T
im

e
e
x
e
c

m
p
r
o
t
e
c
t

F
u

ll
y

M
it

ig
a
te

d
S

u
b
v
a
ri

a
n
t

M
it

ig
a
te

d
C

om
p

il
er

(
)

B
in

ar
y

(
)

C
om

p
il

er
(

)
B

in
ar

y
(

)

Client

ls
2
4

/
14

/
0

39
/

1
8

/
1

+
17

3
k
B

(2
53

%
)

+
28

8
B

(1
.0

8
%

)
+

0.
38

s
(1
.7

2
%

)
3.

04
1

s
3

3
3

8
81
.1

%
81
.1

%
8
7.

5
%

8
7.

5
%

ch
ow

n
2
2

/
11

/
0

3
6

/
14

/
0

+
1
74

k
B

(3
69

%
)

+
28

0
B

(1
.5

2
%

)
+

0.
29

s
(1
.3

5
%

)
2.

77
7

s
3

3
3

8
81
.7

%
81
.7

%
87
.8

%
8
7.

8
%

ca
t

18
/

6
/

0
34

/
1
3

/
0

+
17

4
k
B

(3
97

%
)

+
27

2
B

(1
.9

%
)

+
0.

08
s

(2
.2

9
%

)
2.

57
6

s
3

3
3

8
82
.3

%
81
.7

%
88
.1

%
87
.8

%
p
w

d
16

/
4

/
0

34
/

14
/

0
+

17
5

k
B

(4
30

%
)

+
27

2
B

(1
.9

2
%

)
+

0.
21

s
(0
.9

8
%

)
2.

50
7

s
3

3
3

8
85
.1

%
81
.7

%
9
0.

3
%

87
.8

%
d

iff
2
5

/
9

/
0

36
/

1
6

/
0

+
17

3
k
B

(3
04

%
)

+
28

0
B

(1
.2

5
%

)
+

0.
06

s
(1
.4

4
%

)
2.

94
6

s
3

3
3

8
81
.1

%
81
.7

%
8
7.

5
%

8
7.

8
%

d
m

es
g

15
/

5
/

0
34

/
14

/
0

+
17

6
k
B

(4
39

%
)

+
27

2
B

(1
.9

2
%

)
+

0.
08

s
(2
.1

7
%

)
2.

45
2

s
3

3
3

8
85
.1

%
81
.7

%
9
0.

3
%

8
7.

8
%

en
v

1
5

/
3

/
0

33
/

1
3

/
0

+
1
75

k
B

(4
16

%
)

+
27

2
B

(1
.9

2
%

)
+

0.
07

s
(1
.8

8
%

)
2.

41
6

s
8

3
3

8
81
.7

%
81
.7

%
88
.4

%
87
.8

%
gr

ep
20

/
1
1

/
0

34
/

1
6

/
0

+
17

4
k
B

(1
77

%
)

+
27

2
B

(1
.4

9
%

)
+

0.
41

s
(1
.8

8
%

)
2.

74
8

s
3

3
3

8
81
.7

%
81
.7

%
8
7.

8
%

87
.8

%
tr

u
e

3
/

1
/

0
32

/
12

/
0

+
20

0
k
B

(3
27

7
%

)
+

26
4

B
(4
.4

%
)

+
0.

09
s

(2
.5

5
%

)
9.

90
8

s
3

3
3

8
98
.3

%
83
.4

%
9
8.

4
%

8
8.

7
%

h
ea

d
1
7

/
7

/
0

33
/

1
3

/
0

+
17

4
k
B

(4
34

%
)

+
27

2
B

(1
.9

2
%

)
+

0.
06

s
(1
.6

4
%

)
2.

43
6

s
3

3
3

8
82
.3

%
81
.7

%
8
8.

1
%

8
7.

8
%

gi
t

82
/

4
2

/
1

85
/

4
2

/
2

+
21

9
k
B

(4
.5

%
)

+
44

8
B

(0
.0

03
%

)
+

18
.5

s
(2

8
.1

8
%

)
24

7
s

8
8

8
8

34
.3

%
58
.3

%
5
5.

9
%

7
3.

4
%

F
F

m
p

eg
63

/
27

/
1

91
/

27
/

2
+

19
0

k
B

(0
.2

1
%

)
+

47
2

B
(0

%
)

+
26

8
s

(2
7.

14
%

)
64

3
s

8
3

8
8

33
.1

%
34
.9

%
5
7.

8
%

4
4.

1
%

m
u

to
o
l

61
/

1
6

/
1

69
/

1
5

/
0

+
1
89

k
B

(0
.4

8
%

)
+

37
6

B
(0
.0

01
%

)
+

3.
17

s
(0
.6

9
%

)
16

4
s

8
3

8
8

52
.0

%
38
.3

%
6
9.

4
%

6
0.

3
%

m
em

ca
ch

ed
88

/
54

/
1

1
02

/
59

/
4

+
21

6
k
B

(2
8
.9

%
)

+
45

6
B

(0
.1

3
%

)
+

0.
35

s
(5
.5

%
)

8
s

8
3

8
8

30
.3

%
33
.7

%
5
0.

0
%

4
1.

9
%

DB

re
d

is
-s

er
ve

r
85

/
3
5

/
1

93
/

4
2

/
3

+
2
16

k
B

(1
1
.2

%
)

+
47

2
B

(0
%

)
+

2.
4

s
(2
.7

%
)

41
s

8
8

8
8

30
.3

%
32
.0

%
5
4.

1
%

5
4.

4
%

sq
li

te
3

92
/

72
/

1
10

2
/

7
2

/
13

+
21

5
k
B

(5
.9

%
)

+
45

6
B

(0
.0

2
%

)
+

0.
8

s
(7
.2

%
)

45
s

8
8

8
8

62
.9

%
32
.6

%
7
5.

3
%

5
7.

5
%

Server

N
gi

n
x

10
5

/
48

/
0

1
0
6

/
51

/
4

+
2
17

k
B

(1
.5

%
)

+
52

8
B

(0
.0

03
%

)
+

7.
9

s
(1

0
.5

3
%

)
27

7
s

8
3

3
8

32
.0

%
30
.9

%
3
8.

8
%

4
0.

0
%

h
tt

p
d

98
/

5
0

/
1

10
6

/
46

/
0

+
21

8
k
B

(8
.3

%
)

+
50

4
B

(0
.0

4
%

)
+

4
.1

s
(5

%
)

16
.8

s
8

8
8

8
29
.7

%
30
.3

%
5
0.

9
%

4
4.

4
%

232 Chapter 9. Automated Seccomp Filter Generation

6.2 Performance Evaluation

In this section, we evaluate the performance of Chestnut. This includes the
one-time overheads for compiling (Section 6.2) or binary analysis (Section
6.2), the increase in binary size (Section 6.2), and runtime overheads
(Section 6.2).

Compile-Time Overhead

We analyze the impact Sourcalyzer has on the compile time of an applica-
tion. To make comparison possible, we compile the application 10 times
with and without our modification enabled, always using our modified
compiler, and use the average compile time over these runs.

As the results show, we observe the worst-case overhead for the git
application with an increase from an average of 65.5 s (σx̄ = 0.094, N = 10)
to 84 s (σx̄ = 0.054, N = 10), an increase of 28 %. For the busybox utilities
combined, the average increases from 10.94 s (σx̄ = 2.88, N = 10) to 10.99 s
(σx̄ = 2.79, N = 10). When compared to related work [20], we observe a
speedup of factor 73 for Nginx when using Sourcalyzer. This low overhead
makes it a feasible approach to be used in everyday development cycles.

Binary Extraction Runtime

For Binalyzer, we evaluate the time it takes to extract the syscalls from
the dynamic binary. We assume that default dependencies like libc.so have
already been processed, i.e., their extracted call graph is available. For
completeness, we timed the extraction of syscalls from libc.so, which takes
on average 44.66 s (σx̄ = 0.18, N = 10). For the applications themselves,
we can see in Table 9.1 that the extraction process is in the range of 2
to 10 s for the individual busybox utilities, with an average time of 3.4 s
(σx̄ = 0.73, N = 10). For large binaries like FFmpeg (> 100 MB) and its
dynamic dependencies, the extraction takes ≈11 min.

Binary Size Analysis

The code size does not increase with added filters, but the binary size
increases by the meta-information.

Compiler. We analyze the size of the binary produced by Sourcalyzer
compared to a vanilla application. Chestnut needs to treat static and
dynamic ELF files differently as syscall numbers of externally linked
libraries are not known. In a static binary, we only add the set of syscall
numbers to the binary and link against libchestnut and libseccomp. As

6. Evaluation 233

Table 9.2: We evaluate the size overhead of Sourcalyzer on shared libraries
compared to a vanilla version.

Shared library Vanilla Annotated Overhead

musl libc.so 815 kB 1007 kB 23.63 %
libssl.so 657 kB 1.7 MB 161 %
libcrypto.so 4.1 MB 23 MB 460 %

both libraries are of fixed size, the maximum overhead in a static binary
is limited by the number of syscalls Linux provides, i.e., 349 on Linux 5.0.
Table 9.1 shows the overhead for statically linked binaries. As expected,
the overhead is quite small in large binaries, e.g., FFmpeg. In the small
busybox utilities, the overhead appears to be huge (> 177 %), but as these
binaries sizes are in the lower kilobyte range (40-100 kB), linking against
two additional libraries drastically increases the size. Nevertheless, the
binaries remain in the kilobyte range.

For dynamic binaries and shared libraries, we have to embed the entire
call graph as we need the information later on to determine the required
syscalls. Table 9.2 shows the size increase for three shared libraries.
In libcrypto.so, we observe a worst-case increase from 4.1 MB to 23 MB
(460 %). The overhead also increases with the size of the binary as the
call graph is larger for the larger codebase.

Binary. Table 9.1 shows the increase for Binalyzer. We opted
to generate a binary that needs to be launched by ChestnutGenerator
instead of rewriting the binary. Still, for simplicity, we embed the detected
syscalls in the binary from where our wrapper extracts the information.
As we embed only the numbers, the overhead in all 18 applications is less
than 2 %. Binary rewriting incurs the overhead of the dependency on
libchestnut and libseccomp, but this increase is again negligible beneath
the other overheads.

Runtime Overhead and Seccomp

For the static approaches, the only overhead compared to manually
crafted seccomp filters is the parsing of the syscall numbers. As this
is done during application startup, it is a one-time overhead that depends
on the number of rules that need to be set up. We investigate the over-
head for setting up the application with the smallest (true) and largest
(Nginx) number of syscalls based on Sourcalyzer. For Nginx, the setup
time takes on average 9.92 ms (σx̄ = 0.007, N = 10 000) while it only takes

234 Chapter 9. Automated Seccomp Filter Generation

0.58 ms (σx̄ = 0.004, N = 10 000) for true. The remaining slowdown is
then introduced by seccomp itself, which is unavoidable if a developer
decides to use it for syscall filtering.

Dynamic Refinement Overhead

As a microbenchmark, we analyze the impact of Finalyzer on the syscall
latency. We first benchmark the latency of the getppid syscall without
Finalyzer in place 1 million times. The latency of getppid on our test
system (Ubuntu 18.04.4, kernel 5.0.21-050021-generic) is 1358 (σx̄ = 0.91,
N = 1 000 000) cycles. With Finalyzer, we observe an average latency
of 17 103 (σx̄ = 5.52, N = 1 000 000) cycles, an increase of approximately
1160 %. While this increase seems large, it is intended as an optional step
during development. Hence, we consider this less of a problem without
impact on the released application.

6.3 Functional-Correctness Evaluation

Binaries sandboxed with Chestnut must be guaranteed to still work as
intended. Related work [20] tested each application 100 times using
various workloads. For a fair comparison, we perform the same tests. For
applications where a test suite is available, we execute them to reach
higher coverage, ensuring that we do not miss edge cases. Beyond previous
work [11, 20], we evaluate code coverage to show that large parts of the
application are executed. Finally, we perform a 6-month long test of Nginx
sandboxed by Sourcalyzer.

In more detail, we first apply Chestnut to the binaries, cf. Table 9.1.
Obtaining a sound ground truth of whether all syscalls are detected is
infeasible and would require time-consuming formal proofs that are out-of-
scope for this paper. Hence, we rely on executing the available test suites
that should cover many of the different code paths available in the tested
application. This is, for instance, possible for FFmpeg, memcached, redis,
Nginx, and sqlite3. In other cases, we execute the binaries with different
configurations to reach as many different code paths as possible [20]. We
observed no crashes in applications sandboxed with Chestnut. Even if
a syscall is missed in P1, P2 can be used to add it, ensuring correct
functionality.

While this is not an exhaustive test, it can be assumed that test suites
for large applications are designed for complete functionality coverage
and thorough testing of critical components in particular. Based on
the latter, it is a reasonable assumption that our test tests whether all

6. Evaluation 235

syscalls in the core functionality of the application are found. To further
substantiate this, we perform line and function coverage tests for a selection
of applications, cf. Table 9.1. We perform these tests for FFmpeg (Lines:
59.3 %, Functions: 61.7 %), memcached (77 %, 91.9 %), and redis (77 %,
61.5 %). Additionally, the sqlite developers always maintain 100 % branch
and 100 % MC/DC coverage [56]. While not perfect, the results indicate
that large parts of the respective applications are executed and, to a
certain degree, demonstrate that Chestnut does not impede them. In
future work, we want to employ coverage-guided fuzzing to better estimate
whether all required syscalls are found.

Programs using fork+exec, e.g., git-diff, exhibit the inherent problem
of seccomp, namely that a child program inherits its parent’s filters. If
the child uses a syscall blocked by the parent, the child crashes. For such
applications, P2 is necessary to ensure functionality. Out of the 18 tested
applications, P2 was only necessary for two of them, namely git-diff and
git-log as they performed syscalls blocked by their parent. After refining
the filters using Finalyzer, both successfully completed their task.

Adding Missed Syscalls using P2. We evaluate how many syscalls the
static approaches miss. For Sourcalyzer, Finalyzer adds 4 syscalls to musl
libc, which then propagate to applications if the corresponding function
is used, e.g., clone. Table 9.1 shows how many syscalls are added in P2.
For Binalyzer and busybox, P2 only adds a syscall in ls. Sqlite3 misses
the most as Finalyzer needs to add 13 syscalls. These missed syscalls are
only a limitation of our proof-of-concept implementation, occurring in
edge cases that can be handled in a full implementation. Hence, Chestnut
also works without Finalyzer.

Long-Term Study using Nginx. To demonstrate the functional
correctness of Chestnut, we performed a long-term study of 6 months
using Nginx. In this test, we compiled a static version of Nginx using
Sourcalyzer (105 allowed syscalls), which we then deployed to a real-world
server to host a website. Within 6 months, the server handled ≈ 100 000
requests without ever triggering a seccomp violation. This shows that
Sourcalyzer can infer all syscalls necessary for a successful operation on a
real-world system.

6.4 Security Evaluation

To evaluate how Chestnut increases the security of sandboxed applications,
we analyze how often dangerous syscalls, e.g., exec, are blocked (Section
6.4), the number of syscalls not blocked even though they are not used by

236 Chapter 9. Automated Seccomp Filter Generation

the application (Section 6.4), the number of mitigated real-world exploits
(Section 6.4), and how malicious SGX enclaves can be blocked (Section
6.4).

Blocking Dangerous Syscalls

Three of the more dangerous syscalls that Linux provides are the two
syscalls in the exec group, i.e., execve and execveat, and the mprotect

syscall. With the exec syscalls available, an attacker can execute an arbi-
trary binary in the presence of an exploitable memory safety violation [6].
In fact, most libc versions even contain a ROP gadget that leverages the
exec syscall to open a shell [29]. Hence, an attacker can execute a new
program in the context of the current one. With mprotect, an attacker
can modify the permissions of existing memory, i.e., make it executable.
While mmap can be used to map memory as executable, we did not consider
it in our evaluation. We consider attacks not relying on syscalls [8] as out
of scope.

Even with Chestnut, certain attacks are still possible, e.g., adding
an ssh key if a privileged application is hijacked and the open/write
syscalls are allowed. These attacks are also possible with Chestnut, but
other attacks are blocked, improving the overall system security. Hence,
Chestnut still improves the status quo.

Compiler. We evaluate how often Sourcalyzer can block exec and
mprotect (Table 9.1). In busybox, we block the exec syscalls in 9 out of
10 cases and mprotect in all 10. Additionally, we also evaluated all the
remaining busybox utilities and blocked exec in 313 out of 396 (79.0 %) of
them and mprotect in all 396 (100 %). In Nginx, we cannot block exec,
but we block mprotect. In the other applications, we can block neither of
them as our compiler detects a potential call to a function that contains
the respective syscalls.

Binary. Binalyzer blocks the exec syscalls in all busybox utilities, cf.
Table 9.1, where Sourcalyzer could not block the exec syscall in the env
utility. We manually verified that the syscalls are indeed not required. The
mprotect analysis showed the opposite behavior as it is not blocked in any
of the applications. For Nginx, memcached, mutool, and FFmpeg, we also
block the exec syscalls without crashing the application, but not mprotect.
We could not block either one of them in git, httpd, redis, and sqlite3. For
git and the exec syscalls, the reason is that some of git commands rely
on other applications, i.e., the configured pager for commands like diff or
log. The explanation of why we cannot block mprotect using Binalyzer is

6. Evaluation 237

the point of time at which we start blocking syscalls. In Sourcalyzer, we
block syscalls that are reachable only from the main and exit functions,
while we block them from the start of the application in Binalyzer. Hence,
we need to allow mprotect as it is required for setting up the application.
In a full implementation, functions necessary for program startup can be
removed from the analysis, e.g., the mprotect syscall.

Overapproximation of Syscalls

Chestnut can drastically reduce the number of syscalls available to an
application (cf. Table 9.1). For our 18 tested applications, Nginx and
httpd block the least number of syscalls with 106 being allowed. However,
without Chestnut, 349 syscalls in Linux 5.0 would be available [35]. While
Chestnut drastically reduces the attack surface, both Sourcalyzer and
Binalyzer often allow more syscalls than necessary. In this section, we
estimate how tight automatically generated syscall filters are that an
automated approach can generate. We are the first to demonstrate this
for an automated seccomp-filter generation tool. We apply this analysis
also to related work [11] to compare the different approaches (cf. Section
6.5).

Setup. To evaluate our static components’ overapproximation, we
leverage the functionality of Finalyzer in libchestnut. This has the advan-
tage over strace that we do not include syscalls that are needed for setting
up the application, i.e., we only log syscalls after the main entry point.
We then either execute the applications test suite or execute the program
with different arguments to trigger different code paths, i.e., try to trigger
as many of the existing syscalls as possible. The accuracy of our results
depends on the code coverage of the respective test suites. As was the case
in Section 6.3, we argue that despite this not being an exhaustive test,
test suites typically cover at least the core functionality of the application
and its critical components. We substantiate this claim with the code
coverage metrics discussed in Section 6.3 The results show that large parts
of the respective applications are executed, demonstrating that this is an
adequate but not perfect approach to detect overapproximation. This
depicts a first step to the measurement of the tightness of automatically
generated filters.

Using the aforementioned approach, we obtain a list of syscalls that
the evaluated program issued. We calculate that list’s intersection with
the allowed syscalls as detected by Sourcalyzer or Binalyzer. This gives
us a list of syscalls that our approach allows but that are never executed

238 Chapter 9. Automated Seccomp Filter Generation

by the application in our tests. If a syscall was triggered that our static
approaches block, Finalyzer automatically refines the application’s filter
list.

Compiler. As Table 9.1 shows, overapproximation varies between
different applications when using Sourcalyzer. In the busybox utilities, we
observed the largest overapproximation for env, where only 20 % of the
detected syscalls are actually used. For the larger applications, we observe
the largest overapproximation in mutool, with only 26.23 % being used.
Note that the results cannot be compared to Binalyzer due to different
libc versions being used, i.e., musl libc for applications compiled with
Sourcalyzer and glibc in Binalyzer.

Binary. For the evaluation of Binalyzer, we slightly deviate from the
outlined setup just to ease the evaluation. Instead of using libchestnut,
we use the standalone implementation of Finalyzer. Hence, we observe
a larger amount of syscalls as we also record syscalls executed during
program startup, similar to strace.

In busybox, we overapproximate the most in the true utility, where only
37.5 % are being used. In the larger applications, we observe the lowest
percentage of actually used syscalls in mutool, with only 21.74 % being
used. Future work could extend the functional-correctness evaluation,
estimating overapproximation using coverage-guided fuzzing.

Mitigating Real-World Exploits

For evaluating the effectiveness of Chestnut in mitigating real-world ex-
ploits, we assume an attacker that can either inject shellcode or mount a
ROP attack [59] in one of our target applications. We define an exploit
as successful if the attacker can exploit a kernel bug from the application
context. These bugs either trigger a privilege escalation or result in a
denial of service. As seccomp filters restrict the available syscalls, they
reduce the attack surface of the kernel.

For the evaluation, we extract a list of 175 CVEs from the CVE
database [61] that exploit syscalls on the x86 64 Linux kernel. From this
list, we extract the necessary syscalls, resulting in a list of 231 malicious
samples. The reason is that a CVE can be triggered by different syscalls
that are independent of each other. As some syscalls have equivalent
versions, we extend our list of samples to 320 by substituting the syscall
numbers where applicable. We provide a list of these equivalent syscalls in
Appendix A. As we want to show that Chestnut-sandboxed applications

6. Evaluation 239

impede the exploitation of unpatched kernel vulnerabilities, we assume a
kernel that is vulnerable to all these CVEs.

To determine the effectiveness of Chestnut, we cross-reference the
syscall numbers from each sample with the ones we block in Table 9.1.
If one of the syscalls required for the exploit is blocked, we determine
that this application cannot trigger the exploit in the kernel, indicating
that Chestnut increased the security of the system. We consider both the
number of CVEs that we fully mitigate and the number of subvariants
mitigated by Chestnut.

Compiler. With Sourcalyzer, we can fully mitigate 84.04 % of the
CVEs and 89.42 % of the subvariants in the case of busybox. The reason
for that is that the busybox utilities are rather small, allowing only a few
syscalls. Even with larger applications, our compiler still increases the
system’s security, fully mitigating 38.08 % of CVEs and 56.53 % of the
subvariants.

Binary. In busybox, Binalyzer mitigates 81.8 % of the CVEs fully
and 87.9 % of the subvariants. In the larger binaries, Binalyzer can fully
mitigate 36.38 % of the CVEs and 52 % of the subvariants.

Blocking Malicious SGX Enclaves

Intel SGX enclaves cannot directly execute any syscalls, but only use
functionality provided by the host application. The host application can
use syscalls to provide this functionality to the enclave. Schwarz et al.
[52] presented a technique to execute arbitrary syscalls from an SGX
enclave via a ROP attack on the host application. This allows malicious
or hijacked enclaves to mount attacks on the kernel.

Weiser et al. [65] presented SGXJail as a generic defense for malicious
enclaves, blocking them from executing arbitrary syscalls. Binalyzer
achieves a similar goal without affecting the performance of required
syscalls. For the evaluation, we used the public proof-of-concept exploit
provided by Schwarz et al. [52]. The Intel SGX SDK currently does not
support LLVM; hence, we can only evaluate Binalyzer. As enclaves cannot
contain syscalls, Binalyzer only has to scan the host application and allow
only syscalls legitimately used by the host application. Out of the 349
syscalls provided by Linux 5.0, 279 (79.9 %) are blocked, including exec.
We verified that the benign functionality of the host and enclave is not
impacted. As a result, the malicious (or hijacked) enclave cannot run
arbitrary programs anymore, and the attack surface is drastically reduced.

240 Chapter 9. Automated Seccomp Filter Generation

6.5 Comparison to Other Approaches

Two recent approaches on automating seccomp filter generation [11, 20]
were published after the start of our 6-month long-term case study of
Chestnut on Nginx. In this section, we compare our work to these two
approaches and discuss the differences.

Temporal Syscall Specialization. Ghavamnia et al. [20] propose
an automated approach to detect the used syscalls during compilation.
Their approach is limited to applications that can be split into an initial-
ization and serving phase, i.e., server applications. The idea is to detect
syscalls used after the server’s initialization phase, i.e., the point in time
where it starts handling requests. Thus, this approach is not directly
applicable to applications that cannot be easily split into these two phases,
potentially enabling attacks through browsers, malicious PDFs [16, 17],
messengers [23, 54], and office applications [41]. We explicitly consider
such applications in our approach as our threat model is broader and
includes local attackers additionally to remote ones. Similar to Chestnut,
they also extract a sufficiently precise call graph to be able to extract
which syscalls are reachable by the application. Their approach relies on
Andersen’s points-to analysis, which is known to not scale with program
size [2, 24]. We evaluated an orthogonal has address taken approach
as is used by LLVM’s CFI implementation. As this is already used for
the CFI implementation of LLVM, we know that the resulting CFG is
reasonably precise as otherwise applications that rely on software-based
CFI would not work. Our approach achieves similar results in terms
of detected syscalls as the more complex and slower approach used by
Ghavamnia et al. [20]. In contrast to our approach, they require a multi-
tude of tools for the compilation and link-time optimization that is not
supported by every application. As neither Andersen’s points-to nor our
address taken approach can guarantee a complete CFG, we rely on the
more practical address-taken algorithm. This choice significantly reduces
the compile time. For instance, syscall extraction for Nginx using An-
dersen’s algorithm shows an increase in compilation time from 1 min to
83 min (+8300 %) [20] compared to an increase of 7.9 s (+10.53 %) with
Chestnut.

In summary, we improved the approach’s performance significantly
while maintaining accuracy and security. Additionally, our approach is
applicable to a broader range of applications, including local applications
that are commonly hijacked. We also provide an evaluation of the tightness
of the resulting filters.

6. Evaluation 241

Sysfilter. A second approach, sysfilter [11] focuses on extracting
syscalls from existing binaries. While sysfilter and Binalyzer share the
same goal, the approaches differ in the used tools, i.e., Binalyzer relies on
the angr framework that already supports parts of what sysfilter manually
implemented. Both approaches show similar success rates in mitigating
exploits in their respective test sets.

Sysfilter provides no analysis of the approach’s overapproximation,
making it hard to estimate how tight the resulting syscall filters are.
Hence, we perform such an analysis to show differences between the ap-
proaches. As we discussed in Sections 6.3 and 6.4, obtaining a ground
truth is infeasible and would require computational intensive formal
proofs. Hence, we need another source for a reliable baseline to which we
can compare the results of the evaluation for Binalyzer and sysfilter.

To provide this baseline, we rely on the results of Sourcalyzer when
generating a static binary, for two reasons: First, the compiler has the most
information about the application as it needs to generate a functioning
binary, i.e., it needs to know which functions are actually required and
called. The second reason is based on what a compiler like clang does when
it generates the static binary that we use. When generating this binary,
the compiler already removes all unnecessary functions, i.e., functions that
are never called and never have their address taken, from the binary. So
the resulting binary only contains functions and their respective syscalls
if the compiler determined a potential path to the respective function.
Therefore, any syscall found by the two binary tools within the static
binary can be reached and is necessary for the application to work correctly.
This number may differ from the one detected by Sourcalyzer due to the
inherent overapproximation of the function signature heuristic, i.e., read
and write have the same function signature, so if one is used, the other one
is automatically included in the set. In this case, the syscall of a function
is included even though the compiler removed the function’s actual code.
Nevertheless, we expect the numbers to be in a similar range.

In this evaluation, both sysfilter and Binalyzer work on the exact
same static binaries. We ensured that the binary still contains the stack
unwinding information (.eh frame) and other necessary sections (.init,
.fini) on which sysfilter relies for its precise disassembly. While sysfilter
notes that one requirement is a PIC binary, we note that the additional
tasks that sysfilter performs for PIC binaries, i.e., relocations or checking
the dynamic symbol table, are by the design of static binaries simply not
necessary. Building the call graph does not depend on these steps either.
In fact, for binary analysis tools like sysfilter and Binalyzer, a static binary

242 Chapter 9. Automated Seccomp Filter Generation

Table 9.3: The number of extracted syscalls by Sourcalyzer, Binalyzer, and the
two modes of sysfilter.

Binary Sourcalyzer Binalyzer
sysfilter

(vacuumed-fcg)
sysfilter

(universal-fcg)

FFmpeg 63 53 18 53
busybox 163 144 15 152
Redis-server 85 74 12 74

can be considered the most straightforward use case as all information is
already contained within the static binary.

We consider two different modes of sysfilter, i.e., the default behavior
that prunes the call graph based on a reachability analysis and the universal
approach that assumes that every function is reachable by every other
function. As the binary is compiled statically, we expect that both modes
produce the same result as only functions that are reachable from the
main entry point are included. We show the result of this analysis in
Table 9.3.

As our analysis shows, the assumption that both modes of sysfilter
produce the same result does not hold as the pruning-based mode signifi-
cantly underapproximates in all three evaluated binaries. The low number
of detected syscalls hints at some mistake in the pruning algorithm as
the number is too low for such complex applications. In two out of three
binaries, Binalyzer and sysfilter using the universal approach produce the
exact same result while the third binary only shows a small difference of 8
syscalls. In this case, the difference to Sourcalyzer is within an expected
range due to the overapproximation of Sourcalyzer. This is not true for
the pruning-based approach of sysfilter as the difference is too large, and
the number of detected syscalls is lower than the number of syscalls that
are actually used (cf. Table 9.1). Interestingly, the universal-fcg implemen-
tation of sysfilter also supports our observation that a PIC binary is not a
requirement for these types of binary analysis tools as it produces similar
results to Binalyzer, contradicting the statement by its developers. Never-
theless, there is still a difference in the operation between the universal-fcg
approach of sysfilter and Binalyzer as the latter achieves this result by
not assuming that every function is reachable by every other function.
Instead, it still builds a correct call graph and derives the information
from it, which fails for the vacuum-fcg approach of sysfilter.

We investigated the low number of syscalls found in the pruning-based
approach of sysfilter. This analysis showed that during the pruning, the

7. Discussion 243

main function is removed from the set of reachable functions, which results
in the whole application being removed from the analysis. We leave the
analysis of whether this is purely an implementation bug or a hint that
this is a general problem in the approach for future work as this is out of
scope for this paper.

7 Discussion

Limitations and Future Work. Fast and reliable points-to analysis
with limited overapproximation is still an unsolved problem [24]. In some
cases, we also exhibit the opposite effect in angr that it is not able to
detect the call target of an indirect call, hence missing a potentially
reachable syscall. In contrast to previous work, we evaluate this problem
by measuring the code coverage on real-world code examples. Future work
may extend our analysis with coverage-guided fuzzing to obtain more
precise estimates for the overapproximation of automated seccomp filter
generation tools.

Future work may investigate the possibility of extending the syscall
filtering with argument tracking. While detecting constant syscall argu-
ments is possible, the precise propagation of this information throughout
the call graph is not trivial. Solving this problem would allow restricting
syscalls further, e.g., only allow certain hardcoded paths for exec or limit
possible permissions passed to mprotect, e.g., no executable permissions.
Finally, one limitation is the performance of seccomp [25, 62] imposed by
the underlying system. Since this is not a weakness of Chestnut itself,
we consider improving the performance of seccomp out of scope for this
paper.

Related Work. Several related works also discuss the problem of
automating sandboxing mechanisms, e.g., reducing the attack surface of
applications by removing unused code. One of the first approaches for
library debloating is based on removing non-imported functions from a
shared library during load time [42]. This approach has been further
improved by removing all unused functions from shared libraries during
load time by extending the compiler and the loader [46]. Agadakos et al.
[1] proposed a binary-level approach for library debloating, based on
function boundary detection and dependency identification to identify
and erase unused functions. Davidson et al. [10] analyzed the entire
software stack for web applications to create specialized libraries based
on the requirements for PHP code and the server binaries. Shredder [39]
instruments binaries to restrict arguments to system APIs to a predefined

244 Chapter 9. Automated Seccomp Filter Generation

allowlist. Another approach is to apply data dependency analysis for
fine-grained customization of static libraries [55].

More closely related to our work is the approach by Ghavamnia et al.
[20]. However, their approach suffers from a significantly higher execution
time for the analysis during compilation while achieving a comparable
accuracy in detecting syscalls. Wagner and Dean [63] propose a static
approach to build an IDS that uses a similar approach to Sourcalyzer
for pointer analysis to extract a model of expected application behavior.
In general, several papers have proposed static analysis of syscalls for
anomaly detection and IDS [18]. Rajagopalan et al. [48] propose to
replace syscalls with authenticated syscalls that specify a policy and
provide a cryptographic MAC that guarantees the integrity of the syscall.
sysfilter [11] uses the Egalito framework to statically extract the syscalls
from the binary similar to Binalyzer, but has a strong requirement on PIC
binaries which Binalyzer does not.

Other approaches reduce the attack surface using training to identify
the unused code sections, e.g., Ghaffarinia and Hamlen [19]. Without
access to the source code, training and heuristics can be used to identify
and remove unnecessary basic blocks [45].

Previous work focused mostly on C/C++ software with few solutions
for software in other languages. For Java, one approach uses static code
analysis to remove unused classes and methods [28]. For PHP, Azad et al.
[3] proposed a framework using dynamic analysis to remove superfluous
features.

8 Conclusion

Chestnut is an automated approach to block unused syscalls in applications,
identified using static analysis and an optional dynamic refinement. The
compiler-based approach is up to factor 73 faster than previous work
without any loss in accuracy. On the binary level, our approach extends
over previous ones by also applying to non-PIC binaries and thus a broader
set of applications. Chestnut increases platform security without manual
effort as shown in our evaluation of correctness and overapproximation,
using test suites, code coverage, and a 6-month long-term evaluation.
Chestnut blocks more than 82.5 % of all syscalls and 61 % corresponding
kernel CVEs from these applications.

A. List of equivalent syscalls 245

Acknowledgments

This work has been supported by the Austrian Research Promotion
Agency (FFG) via the project ESPRESSO, which is funded by the
province of Styria and the Business Promotion Agencies of Styria and
Carinthia. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No 681402). Additional funding was
provided by generous gifts from ARM, Intel, and Red Hat. Any opinions,
findings, and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the funding
parties.

A List of equivalent syscalls

In this appendix, we provide a list of equivalent syscalls (cf. Table 9.4).

Table 9.4: Syscalls and their equivalents.

Syscall Equivalents

munlockall munlock
listxattr llistxattr, flistxattr
epoll create epoll create1
mlockall mlock, mlock2
execve execveat
recvfrom recvmsg, recvmmsg
writev pwritev
mknod mknodat
open openat
accept accept4
getdents getdents64
sendto sendmmsg, sendmsg
getxattr fgetxattr, lgetxattr
rename renameat, rename2
epoll ctl epoll ctl old

246 Chapter 9. Automated Seccomp Filter Generation

References

[1] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P Ke-
merlis, and Georgios Portokalidis. “Nibbler: debloating binary
shared libraries.” In: ACSAC. 2019.

[2] Lars Ole Andersen. “Program Analysis and Specialization for the
C Programming Language.” PhD thesis. University of Copenhagen,
1994.

[3] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. “Less
is More: Quantifying the Security Benefits of Debloating Web
Applications.” In: USENIX Security Symposium. 2019.

[4] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai
Liang. “Jump-oriented programming: a new class of code-reuse
attack.” In: AsiaCCS. 2011.

[5] Erik Bosman and Herbert Bos. “Framing Signals - A Return to
Portable Shellcode.” In: S&P. 2014.

[6] Nicholas Carlini and David A. Wagner. “ROP is Still Dangerous:
Breaking Modern Defenses.” In: USENIX Security Symposium.
2014.

[7] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: CCS. 2010.

[8] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravis-
hankar K Iyer. “Non-Control-Data Attacks Are Realistic Threats.”
In: USENIX Security Symposium. 2005.

[9] Chromium. Linux Sandboxing. url: https : / / chromium .

googlesource . com / chromium / src / + / 0e94f26e8 / docs / linux _

sandboxing.md.

[10] Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz. “Towards
automated application-specific software stacks.” In: ESORICS.
2019.

[11] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fon-
seca, and Vasileios P. Kemerlis. “sysfilter: Automated System Call
Filtering for Commodity Software.” In: RAID. 2020.

[12] David Drysdale. Anatomy of a system call, part 2. 2014. url:
https://lwn.net/Articles/604515/.

https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://lwn.net/Articles/604515/

References 247

[13] David Drysdale. How programs get run: ELF binaries. 2015. url:
https://lwn.net/Articles/631631/.

[14] Jake Edge. A library for seccomp filters. 2012. url: https://lwn.
net/Articles/494252/.

[15] Jake Edge. A seccomp overview. 2015. url: https://lwn.net/

Articles/656307/.

[16] Jose Miguel Esparza. Quick analysis of the CVE-2013-2729 obfus-
cated exploits. 2014.

[17] Jose Miguel Esparza. Static analysis of a CVE-2011-2462 PDF
exploit. 2012.

[18] Henry Hanping Feng, Jonathon T Giffin, Yong Huang, Somesh Jha,
Wenke Lee, and Barton P Miller. “Formalizing sensitivity in static
analysis for intrusion detection.” In: S&P. 2004.

[19] Masoud Ghaffarinia and Kevin W Hamlen. “Binary Control-Flow
Trimming.” In: CCS. 2019.

[20] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. “Temporal System Call Specialization for Attack
Surface Reduction.” In: USENIX Security Symposium. 2020.

[21] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: S&P. 2014.

[22] Ian Goldberg, David Wagner, Randi Thomas, Eric A Brewer, et al.
“A secure environment for untrusted helper applications: Confining
the wily hacker.” In: USENIX Security Symposium. 1996.

[23] Samuel Groß. Remote iPhone Exploitation Part 1: Poking Memory
via iMessage and CVE-2019-8641. 2020.

[24] Michael Hind. “Pointer analysis: Haven’t we solved this problem
yet?” In: PASTE. 2001.

[25] Tom Hromatka. seccomp and libseccomp performance improvements.
2018.

[26] Google Inc. Sandbox2. 2019. url: https://developers.google.com/
sandboxed-api/docs/sandbox2/overview.

[27] Google Inc. Seccomp filter in Android O. 2017. url: https://

android-developers.googleblog.com/2017/07/seccomp-filter-

in-android-o.html.

https://lwn.net/Articles/631631/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html

248 Chapter 9. Automated Seccomp Filter Generation

[28] Yufei Jiang, Dinghao Wu, and Peng Liu. “JRed: Program Cus-
tomization and Bloatware Mitigation Based on Static Analysis.”
In: COMPSAC. 2016.

[29] Mateusz Jurczyk and Gynvael Coldwind. “Permissions overview.”
In: Insomni’hack (2015).

[30] Vasileios Kemerlis. “Protecting Commodity Operating Systems
through Strong Kernel Isolation.” PhD thesis. Columbia University,
2015.

[31] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation.” In: USENIX
Security Symposium. 2014.

[32] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks.” In: USENIX Security Symposium. 2012.

[33] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: IEEE
/ ACM International Symposium on Code Generation and Opti-
mization – CGO. 2004.

[34] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and
Quan Zhou. “A measurement study on Linux container security:
Attacks and countermeasures.” In: ACSAC. 2018.

[35] Linux. 64-bit system call numbers and entry vectors. 2019. url:
https://github.com/torvalds/linux/blob/master/arch/x86/

entry/syscalls/syscall_64.tbl.

[36] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael
Hicks. “Directed symbolic execution.” In: International Static Anal-
ysis Symposium. 2011.

[37] W. S. McPhee. “Operating system integrity in OS/VS2.” In: IBM
Systems Journal (1974).

[38] Matt Miller. “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape.” In: Bluehat IL (2019).

[39] Shachee Mishra and Michalis Polychronakis. “Shredder: Breaking
exploits through API specialization.” In: ACSAC. 2018.

[40] Mozilla. Seccomp filter in Android O. 2016. url: https://wiki.

mozilla.org/Security/Sandbox/Seccomp.

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp

References 249

[41] Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov,
Sebastian Schinzel, and Jörg Schwenk. “Office Document Security
and Privacy.” In: WOOT. 2020.

[42] Collin Mulliner and Matthias Neugschwandtner. “Breaking Pay-
loads with Runtime Code Stripping and Image Freezing.” In: Black-
Hat USA (2015).

[43] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan.
“Retrofitting Fine Grain Isolation in the Firefox Renderer.” In:
USENIX Security Symposium. 2020.

[44] Vassilis Prevelakis and Diomidis Spinellis. “Sandboxing Applica-
tions.” In: USENIX ATC. 2001.

[45] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung,
Taesoo Kim, and Wenke Lee. “RAZOR: A Framework for Post-
deployment Software Debloating.” In: USENIX Security Sympo-
sium. 2019.

[46] Anh Quach, Aravind Prakash, and Lok Yan. “Debloating Soft-
ware through Piece-Wise Compilation and Loading.” In: USENIX
Security Symposium. 2018.

[47] Nguyen Anh Quynh. “Capstone: Next-gen disassembly framework.”
In: Black Hat USA (2014).

[48] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and Richard
Schlichting. “Authenticated system calls.” In: DSN. 2005.

[49] Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Iso-
lation: Process Separation for Web Sites within the Browser.” In:
USENIX Security Symposium. 2019.

[50] sandboxing:Firejail Security Sandbox. 2018. url: https://firejail.
wordpress.com/.

[51] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: S&P. 2015.

[52] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical
Enclave Malware with Intel SGX.” In: DIMVA. 2019.

[53] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

https://firejail.wordpress.com/
https://firejail.wordpress.com/

250 Chapter 9. Automated Seccomp Filter Generation

[54] Natalie Silvanovich. Exploiting Android Messengers with WebRTC:
Part 1. 2020.

[55] Linhai Song and Xinyu Xing. “Fine-grained library customization.”
In: SALAD. 2018.

[56] SQLite. How SQLite Is Tested. 2020.

[57] Bjarne Steensgaard. “Points-to Analysis in Almost Linear Time.”
In: POPL. 1996.

[58] Nicolas Sylvain. A new approach to browser security: the Google
Chrome Sandbox. 2008.

[59] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[60] Robert Tarjan. “Depth-first search and linear graph algorithms.”
In: SIAM journal on computing (1972).

[61] The MITRE Corporation. Common Vulnerabilities and Exposures.
url: http://cve.mitre.org/.

[62] Tizen. Security:Seccomp. 2018. url: https://wiki.tizen.org/

Security:Seccomp.

[63] David Wagner and R Dean. “Intrusion detection via static analysis.”
In: S&P. 2000.

[64] Fish Wang and Yan Shoshitaishvili. “Angr - The Next Generation
of Binary Analysis.” In: 2017 IEEE Cybersecurity Development
(SecDev). 2017.

[65] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
“SGXJail: Defeating Enclave Malware via Confinement.” In: RAID.
2019.

[66] Mozilla Wiki. Security/Sandbox. 2019. url: https://wiki.mozilla.
org/Security/Sandbox.

http://cve.mitre.org/
https://wiki.tizen.org/Security:Seccomp
https://wiki.tizen.org/Security:Seccomp
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox

10
Domain Page-Table Isolation

Publication Data

Canella, Claudio and Kogler, Andreas and Giner, Lukas and Gruss,
Daniel and Schwarz, Michael. “Domain Page-Table Isolation.” In:
arXiv:2111.10876 (2021)

Contributions

Main author.

251

252 Chapter 10. Domain Page-Table Isolation

Domain Page-Table Isolation

Claudio Canella
1
, Andreas Kogler

1
, Lukas Giner

1

Daniel Gruss
1
, Michael Schwarz

2

1
Graz University of Technology, Austria

2
CISPA Helmholtz Center for

Information Security, Germany

Abstract

Modern applications often consist of different security domains, requiring
mutual isolation. While several solutions exist, most rely on specialized
hardware, hardware extensions, or less-efficient software instrumentation
of the application.

In this paper, we propose Domain Page-Table Isolation (DPTI), a novel
mechanism for hardware-enforced security domains that can be readily
used on commodity off-the-shelf CPUs. DPTI uses two novel techniques
for dynamic, time-limited changes to the memory isolation at security-
critical points, called memory freezing and stashing. We demonstrate the
versatility and efficacy of DPTI in two scenarios: First, DPTI freezes or
stashes memory to support more fine-grained syscall filtering than state-
of-the-art seccomp. With the provided memory-safety guarantees, DPTI
can securely support deep argument filtering, such as string comparisons.
Second, DPTI freezes or stashes memory to efficiently confine potentially
untrusted SGX enclaves, outperforming existing solutions by 14.6 %-22 %
while providing the same security guarantees. Our results show that DPTI
is a viable mechanism to isolate domains within applications using existing
mechanisms available on CPUs, without relying on special hardware
instructions or extensions.

1 Introduction

Memory isolation is a vital primitive to ensure the security of modern
systems. However, this isolation is not only necessary between different
applications, but it becomes more and more important within applications
as well. Often, applications consist of multiple security domains that
should be isolated from each other. Such in-process isolation ensures that
vulnerabilities in one domain cannot easily affect a different domain. The
separation of user and kernel space is a well-established isolation mecha-
nism; trusted execution environments (TEEs) such as Intel SGX or ARM

1. Introduction 253

TrustZone are more recent examples. The interface and memory model
of TEEs share similarities with the kernel-user-space boundary, where
the enclave is trusted, but the rest of the application is not. Other new
ISA extensions, such as Intel MPK [43], allow setting up multiple security
domains within applications to efficiently control access permissions for
different memory ranges. In all these cases, the isolation is configured in
software and enforced by the hardware.

However, while the isolation must provide strong security guarantees,
it is still necessary that the domains can communicate with each other.
This interface between low-privilege and higher-privilege domains is often
exploited. For instance, the syscall interface between unprivileged appli-
cations and the kernel is often used for privilege-escalation attacks [89].
Hence, state-of-the-art isolation techniques such as seccomp [21] provide
developers with the ability to block syscalls, reducing the kernel’s attack
surface in case of exploited applications. While this works well for blocking
syscalls, the performance overhead can increase linearly with the length
of the blocklist [38, 90]. Still, while securing this interface is important,
there is currently no option to create sophisticated filters. For example, it
is not possible to block the exec syscall for all but a hard-coded set of ap-
plications. This lack of support for deep argument filtering is not merely a
matter of implementation but stems from the current filtering-mechanism
design [22, 23].

Existing isolation solutions are often limited to very specific scenarios,
require specialized hardware, or source- or binary-level instrumentation of
the application. For example, the hardware isolation of TEEs can only be
applied to enclaves. However, in practice, it is infeasible to run all software
in enclaves. Enclaves have limitations, such as the inability to interact
with the kernel directly, and are only available on a subset of CPUs. Their
asymmetric trust model was exploited in recent work [84, 97], requiring
mitigations with high overheads or special hardware features. Proposals for
domain isolation require hardware extensions or modifications as well [27,
79, 97]. Moreover, hardware extensions such as Intel MPK are not broadly
available, e.g., MPK is only available on Xeon Scalable CPUs and some
10th-generation Intel CPUs. Furthermore, an attacker can disable Intel
MPK security domains after gaining code execution within the protected
application, as preventing this is not in scope for Intel MPK [91]. Hence,
while these proposed isolation mechanisms are effective, they cannot be
used on commodity CPUs.

In this paper, we introduce the notion of dynamic, time-limited
changes to the memory isolation at security-critical points, a security-

254 Chapter 10. Domain Page-Table Isolation

domain mechanism we call DPTI (Domain Page-Table Isolation). As
DPTI-based solutions rely only on existing hardware-enforced memory
protection of the memory-management unit (MMU), we can implement
memory isolation for sandboxing and domain-isolation scenarios on com-
modity, off-the-shelf CPUs. Still, DPTI has the same page granularity
as other approaches that require dedicated hardware or hardware ex-
tensions [71, 79, 91, 97]. Similar to KPTI [36, 64], DPTI uses efficient
page-table modifications to create security domains that are temporarily
inaccessible from another domain. However, in contrast to KPTI, DPTI
does not have to maintain a second set of page tables for every process,
and it has to solve additional challenges such as multiple mappings to one
physical page. In the remainder of this work, we use DPTI as shorthand
for both the concept and its proof-of-concept implementations.

We evaluate DPTI on Intel CPUs ranging from 2015 (for SGX support)
to 2018. However, as DPTI only relies on the MMU, it runs on all CPUs
with virtual-memory support, in contrast to previous works [27, 37, 54,
68, 71, 79, 91]. Contrary to software fault isolation (SFI), we do not use
any instrumentation of the application. With DPTI, it is even possible to
add stricter syscall filters to existing (legacy) applications via a wrapper
application.

We demonstrate the versatility of DPTI in two scenarios, enhanced
syscall filtering and SGX protection domains, leading to high-
performance, feature-rich solutions. In these, DPTI relies on two new
techniques: memory freezing and stashing.

In our first application of DPTI, we present syscall filtering that is more
fine-grained than seccomp. DPTI temporarily freezes or stashes the mem-
ory ranges of complex syscall parameters from the untrusted user-space
application on a syscall, preventing modification while the kernel performs
the syscall. Such a design requires solving multiple challenges, including
process creation and replacement, multithreading support, alias mappings,
and alternative memory-access interfaces. However, by solving these
challenges, DPTI-based filtering can evaluate complex parameters, such
as strings, without introducing time-of-check-to-time-of-use (TOCTOU)
vulnerabilities into the syscall interface [22, 23, 82]. In a microbenchmark,
non-argument-inspecting DPTI-based filters incur an overhead of 28.7 %
compared to seccomp’s 16.9 %.

In the second use case, DPTI improves performance and security of
SGX enclave confinement [84, 97]. DPTI prevents the rewriting of host
memory from SGX, again by stashing or freezing host memory, making
it inaccessible to enclaves. However, this is not trivial: switching to and

2. Background 255

from an enclave requires some host pages. We address this challenge by
securing SGX entries and exits with a special code bridge page. Thus, we
mitigate host impersonation for arbitrary syscall execution by a malicious
or hijacked SGX enclave [84]. While DPTI outperforms existing SGX
enclave confinement solutions [97] by 14.6 %-22 %, the most important
advantage is that DPTI works on commodity systems without hardware
changes and maintains full compatibility with existing enclaves.

DPTI is an efficient and easily implementable solution for isolating
security domains in various scenarios. Due to its software-only implemen-
tation without specific ISA-extension dependencies [27, 37, 54, 68, 71, 79,
91], it can be readily used on commodity, off-the-shelf hardware.

To summarize, we make the following contributions:

1. We introduce DPTI,
1

an MMU-based isolation mechanism inspired
by page-table isolation, enabling fine-grained security domains and
security policies.

2. We use DPTI to implement extended syscall filtering, enabling sophis-
ticated argument-inspecting filter rules not supported by seccomp
or isolation:AppArmor.

3. We show that DPTI can replace existing SGX enclave confinement
solutions, isolating unmodified untrusted enclaves on commodity
hardware.

4. We thoroughly evaluate the security and performance of DPTI and
show that it provides higher performance and security than previous
solutions in both case studies.

Outline. Section 2 discusses background. Section 3 describes the
high-level idea and threat model. Section 4 details the two case studies
for DPTI. Section 5 evaluates DPTI’s security and performance. Section
6 discusses future and related work. Section 7 concludes.

2 Background

2.1 Sandboxing

Sandboxing provides an extra layer of security by strictly controlling the
resources an application can access [34, 73]. In many cases, sandboxing
is a last line of defense that assumes that the sandboxed application was
already exploited. Thus, a sandbox should drastically limit the impact
of an exploit. Existing sandboxes typically restrict access to the network
and file system and limit the available syscalls. Sandboxes are widespread

1
Prototype can be found at https://github.com/domain-isolation/DPTI.

https://github.com/domain-isolation/DPTI

256 Chapter 10. Domain Page-Table Isolation

in browsers [76, 98, 99] and on mobile operating systems [4, 42]. Linux
provides sandboxing via the SELinux [100] and isolation:AppArmor [44]
frameworks.

2.2 Linux Seccomp

A vital part of sandboxes is the ability to restrict the syscall interface.
The syscall interface provides functionality from the operating system
to user-space applications. An exploit with unrestricted access to the
syscall interface can read, write, and execute files on the system. In
the worst case, the syscall interface itself is exploitable, leading to a
privilege escalation [47–49]. Hence, sandboxes try to minimize the number
of exposed syscalls to a minimum required for the application to work.
Secure Computing (seccomp) [21] is a syscall filter that is integrated
into the Linux kernel. An application can specify allowed syscalls, and
the kernel blocks all others. In addition to the syscall itself, seccomp
can define filters for integer parameters. Filters based on the content of
strings or structures are not supported, as seccomp cannot dereference
parameters [22, 23].

Due to the complexity of limiting the syscall interface, several ap-
proaches to automatically generate syscall filters have been published
recently [11, 20, 30, 31]. The common approach is to dynamically or
statically analyze an application to detect all required syscalls.

2.3 Runtime Attacks

Many security vulnerabilities are caused by memory safety violations.
Typical memory safety violations, such as buffer overflows, enable attackers
to modify an application in an unintended way [89]. In many cases,
attackers try to overwrite code pointers to hijack the control flow. On
modern systems, data is typically not executable, and thus an attacker
cannot inject so-called shellcode into an exploited application [89]. Thus,
exploits reuse existing program parts and divert the control flow to so-
called gadgets [70]. Shacham [86] generalized such control-flow-hijacking
attacks using gadgets as return-oriented programming (ROP). By chaining
multiple gadgets, it is possible to build arbitrary exploits. In addition
to such control-flow-hijacking that overwrite pointers [12, 33, 57, 80, 86],
data-only attacks [45, 77] can also violate memory safety.

Race conditions are a type of vulnerability where a data structure is
accessed in parallel, and the actual order of accesses affects the correctness

2. Background 257

of the program. A special type of race condition are time-of-check-to-time-
of-use (TOCTOU) vulnerabilities. A TOCTOU bug exists if a memory
location is accessed multiple times, and an attacker can manipulate the
data between the access. Such an exploitable TOCTOU bug is called
a double-fetch bug [82, 95]. Double-fetch bugs are especially dangerous
in the syscall interface as they are hard to detect [95] and often easy to
exploit [82].

2.4 Memory Isolation

Memory isolation has been used to provide security for a long time.
Segmentation and paging are two of the most well-known approaches to
isolate memory on x86. The operating system configures the memory,
and the CPU then enforces this configuration. While segmentation is no
longer used to enforce access permissions on x86-64, security researchers
continued to propose information hiding techniques based on this legacy
feature [5, 56, 63]. Modern systems rely on paging to translate the virtual
addresses of a process to physical addresses through the help of page tables.
Page tables also contain access permissions which determine whether a
page is read-only or user-space accessible.

Other memory isolation techniques use newer hardware features such
as Extended Page Tables (EPT) [54, 62], Software Guard Extensions
(SGX) [26], and Memory Protection Keys (MPK) [37, 54, 71, 79, 91].
EPTs facilitate memory virtualization, while SGX allows protecting code
and data even from a compromised operating system. MPK introduces
a new register containing a protection key and allows a developer to
associate memory with such a key. The key itself is stored in the page
tables, and an access is only allowed if the current register key matches
the one stored in the page table.

2.5 SGX

Intel SGX [43] is a trusted execution environment (TEE) introduced with
the Intel Skylake microarchitecture in 2015. Using this instruction-set
extension, applications can be divided into an untrusted and a trusted part.
The trusted part, the so-called enclave, is integrity- and confidentiality-
protected by the CPU. Thus, even in the case of a malicious operating
system, the content of the enclave is protected. Enclaves are hosted by
ordinary, untrusted applications. Both enclave and untrusted application
run in the same virtual address space. While the hardware prevents out-
side access to the address range of the enclave, the enclave can access all

258 Chapter 10. Domain Page-Table Isolation

Domain A

Shared

Domain B

Domain A

Shared

Domain B

switch

domain

(a) Domain A view

Domain A

Shared

Domain B

Domain A

Shared

Domain B

switch

domain

(b) Domain B view

Figure 10.1: The shared address space and the different views of it. No change
for Domain A upon switching while parts are stashed or frozen
(red pattern) for Domain B with DPTI.

memory of the host application. The SGX threat model assumes that the
entire software stack is malicious. However, there is no consideration that
an enclave might be malicious. This asymmetry enables enclave malware
that can impersonate the host application to execute arbitrary syscalls [84,
97]. Enclaves themselves cannot execute syscalls. Instead, enclaves com-
municate with the host application via ECALLs and OCALLs. After
loading the enclave, the host application can call secure enclave functions
using ECALLs via a call gate, similar to syscalls. If the enclave wants to
use functionality from the operating system, such as a syscall, it has to
use an OCALL to call into the host application. The ECALL/OCALL
interface is defined by the developer at compile time.

3 High-Level Idea & Threat Model

On a high level, DPTI provides software-defined memory protection for
fine-grained sandboxing policies, e.g., deep argument filtering. There
are two variants for this protection: read-only protection or entirely
inaccessible. We refer to the former as DPTI-Freeze and to the latter
as DPTI-Stash. Either variant guarantees that the memory cannot be
modified by an untrusted domain.

Figure 10.1 shows the idea of DPTI. Two security domains share one
virtual address space and use a dedicated memory region for communica-
tion, i.e., for passing data across the security boundary. In many cases,
while there is a defined memory region for the communication, Domain
A has access to the entire Domain B. As both domains can execute code
in parallel, Domain A cannot ensure the atomicity of the accessed data
in this memory region. Hence, Domain B could modify the data while
Domain A accesses it, potentially leading to data corruption or TOCTOU
vulnerabilities. DPTI solves this problem by protecting the content of

4. Case Studies 259

this memory region as long as Domain A accesses it. We achieve this
protection by modifying page-table entries of the respective memory region
in one of two ways. With DPTI-Stash, we modify the user-accessible bit
in the page table, temporarily making the region accessible only to the
kernel. Contrary, DPTI-Freeze modifies the read-write bit, preventing
write access while allowing read accesses to the region.

While we envision that DPTI can be applied in many different ways, we
present two case studies that help illustrate its behavior and demonstrate
the provided security. The scenario shown in Figure 10.1 is common for
operating systems, where the kernel (Domain A) is typically mapped into
the upper half of the virtual memory of every user application (Domain B).
In Section 4.1, we present a case study with these two security domains.
Another scenario is the execution of SGX enclaves, which share the address
space with the host application. In Section 4.2, we present a case study
in which DPTI ensures that a malicious or exploited enclave (Domain B)
cannot modify data of the host application (Domain A).

3.1 Threat Model

For DPTI, we assume two different security domains in one application,
such as user and kernel space, or untrusted application and trusted enclave.
DPTI provides additional sandboxing to existing isolation mechanisms
and hence assumes that the used isolation mechanisms are reliable. In
particular, DPTI presumes that the MMU-based isolation cannot be cir-
cumvented architecturally. Transient-execution attacks circumventing
security domains do not undermine the security of DPTI. Meltdown [60]
shows that the US bit can be circumvented during transient execution, but
it only allows reading the page. Foreshadow [92] circumvents the present
bit for reading enclave memory. However, DPTI does not protect confiden-
tiality. Hence, Meltdown or Foreshadow do not cause a security problem.
Similarly, while Spectre v1.1 [52], Store-to-Leak [81], and LVI [92] show
that values can be transiently written to inaccessible pages, applications
can issue a serializing instruction before reading from the DPTI-isolated
memory region to avoid reading transient data. Fault attacks [50, 51, 69]
are out of scope.

4 Case Studies

In this section, we present two case studies showing how DPTI can
efficiently isolate different domains. First, we apply our method to facilitate

260 Chapter 10. Domain Page-Table Isolation

efficient and complex syscall argument filtering that is not vulnerable to
TOCTOU vulnerabilities (Section 4.1). Second, we apply DPTI to SGX,
preventing attacks from untrusted or exploited enclaves [84] (Section 4.2).

4.1 Enhanced Syscall Filtering

To restrict syscalls, Linux provides developers with seccomp. While
seccomp allows filtering static, primitive syscall arguments, it does not
support complex arguments such as strings or structs due to TOCTOU
vulnerabilities [22, 23]. Other approaches are based on syscall interposition,
where the syscall is delegated to another process which decides whether a
syscall is allowed [24, 29, 32, 74, 93]. Additionally to the cost of delegating
the syscall, these approaches suffer from the same TOCTOU problem as
seccomp [28, 96].

We focus on deep argument filtering without introducing TOCTOU
vulnerabilities while maintaining the performance of seccomp in typical
scenarios. By applying DPTI, we remove an attacker’s ability to modify
the syscall argument while the kernel performs operations, such as checks,
on it. Specifically, we prevent the attacker from rewriting a pointer or
modifying a string while the kernel inspects that syscall argument. On a
high level, we identify the page used by the syscall argument and make
it read-only or fully inaccessible by modifying specific bits in the page-
table entry. The argument is then compared to the allowed values for
the respective syscall, and if the argument check succeeds, the syscall
is executed. By design, this approach cannot suffer from TOCTOU
vulnerabilities. Such an approach requires solving several challenges such
as process creation and replacement, multithreading, alias mappings, and
other memory-access interfaces.

By providing the means for deep argument filtering, we improve the
system’s security by further limiting the post-exploitation impact of a
memory safety vulnerability as we can better restrict syscalls such as
exec. Other seccomp functionality, i.e., filtering syscalls without argument
checking and checking of static integer arguments, is supported too. We
refer to this as simple filtering.

Threat Model

Beyond the threat model of DPTI (cf. Section 3.1), we assume that the
application itself is not malicious but exploitable, e.g., due to a memory-
safety violation, allowing an attacker to gain arbitrary code execution
within the application. Similarly, the kernel is considered to be trusted

4. Case Studies 261

1 filter_info_t *filters = dpti_create_filters ();

2 dpti_add_filter_rule(filters , SYS_read);

3 dpti_add_filter_rule_string(filters , SYS_write ,

1, EQ , "teststring");

4 dpti_install_filters(filters);

5

Listing 4.1: Example of a simple allow/reject filter for read and a complex filter
requiring deep argument filtering on the first argument of the write
syscall using our support library.

but potentially exploitable. We assume that the post-exploitation phase
targets the system and requires syscalls, e.g., to gain kernel privileges.
Contrary to previous work [11, 20, 31], we can filter syscalls related to file
operations by inspecting complex data types. Our approach is orthogonal
to other defenses such as CFI, ASLR, NX, or canary-based protections
and improves security if these were circumvented.

Implementation

Our enhanced sandboxing consists of two parts: a kernel part that performs
the actual task of filtering syscalls and the respective arguments, and a
support library that can be linked to the application. The support library
generates the individual syscall filters and installs them. As such, it is
a similar high-level abstraction as libseccomp is for seccomp. However,
filter generation in libseccomp is much more complex due to the usage
of cBPF. During the seccomp filter installation, the cBPF is verified
and converted to eBPF, which introduces additional overhead. As our
filters are not expressed in BPF, the setup is significantly easier. For our
proof-of-concept implementation, we implement our filtering entirely as a
standalone kernel module. For a production-ready system, the filtering
should be implemented directly in the kernel.

A prerequisite for all syscall-filtering approaches is to be able to
intercept syscalls. Fortunately, entry points for syscalls are clearly defined,
making it easy to intercept all syscalls. This includes both legacy 32-bit
syscalls as well as 64-bit syscalls.

Setup For the setup, the user-space application sends the filters to
the kernel module. The filters are defined in a high-level representation
similar to libseccomp, as illustrated in Listing 4.1. The module then copies
the filters into kernel memory. Preventing TOCTOU vulnerabilities is

262 Chapter 10. Domain Page-Table Isolation

Syscall allowed? Argument Check? Type?

String: complex
check

Integer: simple
check

Terminate Allow

no

yes

no

yes
or

success

fail

Figure 10.2: Overview of the 3 DPTI syscall-filtering cases.

not necessary at this point, as the application is still considered benign.
Otherwise, if the application was already exploited, an attacker can either
manipulate the filters or skip their installation entirely, rendering the
filtering useless. This is in line with other filtering approaches, such as
seccomp. After copying the filters, the application is considered sandboxed,
and no further updates are possible. A full implementation can consider
allowing further restrictions of the filters, similar to seccomp.

Filtering Syscalls Every requested syscall is delegated to our generic
syscall function inside the module. If the syscall originates from a sand-
boxed application, the syscall function uses the syscall number to retrieve
the syscall’s filter rules. Contrary to seccomp, checking the filter for a
specific syscall does not require scanning all syscall filters. Instead, it is a
simple array access; the lookup time for a filter does not depend on its
position within the set of filters [38], reducing the asymptotic runtime
from linear to constant.

Figure 10.2 illustrates the 3 cases when checking a syscall:

(1) Syscall not allowed: The syscall fails the initial check whether it is
allowed, making it unnecessary to check potential argument filters, and
the application can be terminated.

(2) Syscall allowed, no argument filtering requested: The syscall passes
the initial check, i.e., the application explicitly allowed the syscall, re-
quiring the check of potential argument filters. However, the syscall is
allowed unconditionally as no filters are present. Thus, DPTI calls the
original syscall function with the same arguments. We refer to these first
two cases as simple allow and reject filters.

(3) Syscall allowed, argument filtering requested: The syscall itself
is allowed, making it necessary to check the installed argument filters.
As the ABI [66] defines that syscalls can have up to 6 arguments, every
argument must be checked against possible filters. We iterate over all
potential arguments, checking for each whether a filter is defined. Checks

4. Case Studies 263

then distinguish between primitive and complex data types. Primitive
data types fully fit into the 64-bit register used as syscall argument. Such
data types include, e.g., integers or booleans. They do not require any
special handling as they are already copied to the kernel. Hence, they
are not vulnerable to TOCTOU and are similarly handled as they are in
seccomp.

Complex data types cannot be contained fully in the 64-bit register and
are typically pointers to either strings or structures. These pointers point
to user-space memory and can thus be modified by a concurrently running
thread during the syscall. If the modification happens between applying
the filter and executing the syscall, the filter is effectively rendered useless.
We focus on checking string arguments, as strings are widely used as
syscall parameters. As string parameters are especially used with file
names [82], they are an excellent target for sandboxing. Our method
is not limited to strings but also applies to structures. For these types
of arguments, we have to ensure that they cannot be modified between
applying the filter and the execution of the syscall. Thus, we first resolve
the page table mappings of the argument pointer. At this point, we
can differentiate between our two variants of DPTI, providing different
behavior and security guarantees.

DPTI-Stash: Our first variant relies on modifying the US bit, essen-
tially making the page a kernel page and fully inaccessible to user space.
To achieve this, we clear the US bit and flush the corresponding TLB entry
from all necessary CPU cores. If the executable bit is set, we temporarily
clear it as well so that no user-controlled executable pages are brought into
the kernel. When an attacker tries to modify the argument in a different
thread, the MMU enforces the protection by generating a page fault due
to the privilege violation. Our module can now perform a simple string
comparison with all developer-provided values without having to consider
TOCTOU vulnerabilities. If the check succeeds, the syscall is allowed,
and the original syscall is executed. Otherwise, the application is killed
due to the violation. Before returning from the syscall, page-table entries
are restored if the page is currently not used in another, concurrently
executed, syscall where string filters are used.

DPTI-Freeze: The second variant relies on the RW bit, making the
page write-protected. By clearing it in the kernel data structures as well
as in the page-table entry, the page is read-only. A malicious thread can
only read from it but no longer modify its content, preventing TOCTOU
vulnerabilities. The syscall filtering is equivalent to DPTI-Stash. After
the syscall is done executing, we restore the previously cleared bits. This

264 Chapter 10. Domain Page-Table Isolation

requires some additional tracking of pages to determine whether this step
is necessary. To prevent a concurrent thread from issuing an mprotect
syscall to make the page writable again during the execution of another
syscall, it is necessary to stall mprotect with write permissions on a page
that had its write permissions cleared by DPTI-Freeze. We can use the
same stalling functionality that is already available in the Linux kernel,
e.g., for swapping pages.

Special Cases

The approach outlined above works for most syscalls and can be handled
by our generic syscall function. Only creating (fork, clone) and destroying
(exit) processes need additional treatment as well replacing an existing
process with exec. Linux creates a new task for a newly created process
or thread, including a new process identifier. Hence, for the fork and
clone syscall, we increase the reference counter of the filters and share
them with the newly created process or thread. When calling exec after
fork, we ensure that the copy-on-write syscall-parameter page is made
accessible again for the other process(es) after the exec succeeds. In our
proof of concept, we simply trigger a copy-on-write fault on this page
before manipulating the page-table entry.

A second special case is the handling of the exit and exit group
syscalls, as they clean up our filters. When a sandboxed application
executes one such syscall, we decrease the reference counter of the filters
by the number of threads in the group and mark the thread group as
no longer sandboxed. If the reference counter reaches 0, i.e., no thread
or forked process needs the filters anymore, we free the memory before
terminating the process.

Multithreading

Due to the page size granularity, it is likely that the string is not the
only content of the associated memory page. While read accesses from a
concurrent thread are no problem for DPTI-Freeze, write accesses to the
page lead to a page fault. For DPTI-Stash, both read and write accesses
trigger a page fault.

In the case of DPTI-Stash, the page-fault handler can easily determine
that the access would normally be legal, as kernel pages are not found
within the user-space address range. We experimentally verified this by
scanning the pages of all running user-space processes on an Ubuntu 18.04
machine. If the page-fault handler determines that the faulting page is

4. Case Studies 265

not an actual kernel page, it stalls the offending thread until the syscall
has finished and the page is again available to user space. The kernel
already needs to stall processes for swapping; this functionality can be
reused. We discuss potential stalling times in more detail in Section 5.1.

For DPTI-Freeze, we already track all pages that are modified for deep
argument filtering, allowing us to easily differentiate a potentially legal
write from one to a page that was never writable. If the page fault occurs
on an access to such a tracked page, we again stall the offending thread
until the original page access rights are restored. As stated before, read
accesses cause no problem.

Alias Mappings

Although multiple writable mappings to the same physical address are
rare (cf. Section 5.1), DPTI has to consider such scenarios as well. With
code execution, an attacker can create two virtual address mappings to the
same physical page, i.e., by using mmap and other shared-memory-related
syscalls. While the virtual address mapping used by the syscall is stashed
or frozen, the content of the physical page can be modified via the second,
unaltered mapping. This once again facilitates a TOCTOU vulnerability.
Hence, it is necessary that alias memory mappings are tracked, and if
such a mapping is used during the argument check, all other mappings to
the same page must be modified too.

A probe on the page-fault handler ensures that all possible methods of
creating an alias mapping are detected. For each physical page, we store
all virtual addresses mapping this page, including meta information such
as the permission and the process, independent of whether the mapping
is in the same or a different process. If a shared page is used during
deep argument filtering, all mappings to it are modified in the previously
outlined way. We discuss the performance impact and how frequently
such mappings are used by real-world software in Section 5.1.

Modifying Memory through /proc/self/mem

Finally, an attacker can potentially circumvent our TOCTOU-free ar-
gument filtering via the /proc/self/mem interface, which allows directly
modifying the content of a physical page, ignoring missing write permis-
sions. To protect against this possibility, it is necessary to either restrict
the access to this file entirely, i.e., make it read-only, or to the offset
that corresponds to the physical page currently used in a syscall. In
our proof-of-concept, we rely on the former by installing a probe on the

266 Chapter 10. Domain Page-Table Isolation

mem write function that prevents the write if the application is currently
sandboxed. As the read-only approach is already done by REL 5 and 6,
it is reasonable to assume that this does not impair the functionality of
applications [65]. Moreover, to understand whether this interface is used
in open-source software, we looked at all code on GitHub that opens this
file for writing. After filtering out all PoCs for exploits, we only found one
project (rr) that uses this functionality. Hence, while a production-ready
implementation can implement more fine-grained control, it is questionable
whether write access to this file is necessary at all.

4.2 SGX-Protection Domain

The classical SGX threat model is asymmetric, i.e., it enforces strong
protection guarantees for enclaves but does not protect the user application
from the loaded enclave. Enclaves can lead to various security concerns,
as neither the operating system nor the user application can verify the
code executed inside the enclave, as intended by the design of SGX. One
limitation of SGX is that it does not allow the enclave to execute code
outside the enclave boundaries [16]. However, Schwarz et al. [84] showed
malware inside enclaves can simply manipulate the user applications’ stack
to execute arbitrary code outside the enclave. To balance the protection
guarantees for the user application, SGXJail [97] proposed to isolate
enclaves by moving them to a separate process with strict syscall filters,
or by relying on hardware modifications, i.e., memory protection keys
(Intel MPK).

Our DPTI-based SGX protection domain extends the memory isolation
guarantees of SGXJail. However, with DPTI there is no increased overhead
of process isolation, and no need for MPKs or for changing the SGX
specification. DPTI replaces a thread’s page-table mapping and isolates
the user application’s memory during the execution of an enclave. As
most available pages, i.e., the entire user-space application, have to be
isolated, switching the mapping is faster than iterating over all mapped
pages.

The isolated mapping only contains the original mappings for the
loaded enclave, a single additional code page mapping, and a few data
page mappings from the user application. The single code-page mapping
is used to enter the enclave, while the additional data-page mappings are
used to transfer data from and to the enclave. Upon enclave exit, our
protection verifies that the enclave did not tamper with the provided pages
or registers and restores the non-isolated mapping for normal execution.

4. Case Studies 267

All other pages are either protected by DPTI-Freeze or DPTI-Stash,
depending on what security guarantees the user application enforces (cf.
Section 5.2).

In contrast to our proposed syscall filtering, the SGX protection domain
implements DPTI-Stash by not mapping a page instead of clearing the US
bit. Therefore, the enclave can no longer access any of the non-isolated
pages as these pages are no longer mapped inside the thread’s virtual
address space. When using DPTI-Freeze, all of the non-isolated pages are
mapped as read-only pages in the isolated mapping, allowing the enclave
to read but not modify them.

To perform fast transitions, we construct the isolated mapping once
and then reuse and update it upon entering. We redesign the data flow
between the enclave and the user application to remove unnecessary
copying of the data passed to an enclave, leading to a high-performance
SGX protection domain with only an overhead of 9.9 % to 24.0 % for the
worst-case scenario (cf. Section 5.2).

Threat Model

For the SGX protection domain, we reverse the classical SGX threat
model. We assume that the loaded enclave is untrusted and potentially
malicious, whereas the app loading the enclave is trusted. We assume
that the enclave tries to read or modify data of the user application, e.g.,
to mount a ROP attack [84]. The trusted user application does not use
seccomp filtering to restrict syscalls. We assume that the enclave code is
unknown and imposes no restrictions on limiting the interfaces between
the enclave and the user application in the sense of ECALLs and OCALLs.

Implementation

The SGX protection domain requires no changes to existing enclaves. All
parts are implemented in the driver and the Untrusted RunTime System
(URTS).

Isolated Mapping For the isolated mapping, we extend the SGX
driver, which provides the necessary information about pages associated
with a given enclave. We create one isolated mapping per enclave to
ensure that multiple threads within enclaves are supported while colluding
enclaves cannot circumvent the isolation. The enclave’s isolated mapping
is extended by a Code Bridge Page (CBP) and Data Bridge Pages (DBPs).
The CBP contains the EENTER instruction used to enter enclaves inside

268 Chapter 10. Domain Page-Table Isolation

Application

...

syscall

0x..1000

1○
eenter
nop

...

nop

0x..2000 2○

cmp RDI

jne

...

0x..3000 4○

Enclave

...

RAX=4

eexit
...

0x..1000

3○

Isolated CR3

Non-Isolated CR3

Kernel
PF-Handler 4○
CR3=&orig

...

Syscall 1○
CR3=&isol

...

Figure 10.3: Control-flow transition of entering and leaving DPTI-based SGX
protection domain.

the URTS. It is shared amongst all enclaves as the URTS library is only
loaded once inside the user application. The Data Bridge Pages (DBPs)
are used to transfer data between the enclave and the user application.
To facilitate fast switches between two mappings, we only exchange the
actual hardware mapping inside the CR3 register and retain the VMA
structures of the original mapping.

Entering and Exiting Isolation Figure 10.3 depicts the control flow
for switching protection domains. When a thread executes an IOCTL
syscall into the SGX driver 1○, the driver switches the calling thread’s
virtual address mappings to the isolated address mapping. DPTI ensures
that the syscall instruction is the last instruction on the page before the
CBP. Hence, the page containing the syscall is not part of the isolated
mapping, as returning from the syscall does not require this page. The
enclave is entered and executed in isolation via the EENTER instruction

2○. To exit an enclave, the EEXIT instruction is invoked from inside the
enclave, with the RAX register set to 4 and the return address specified
in RBX 3○. While DPTI ensures that the only executable mapping is the
CBP, an enclave can potentially still return to an arbitrary location inside

4. Case Studies 269

the CBP. Hence, the CBP must not contain exploitable code. As x86 relies
on variable-length opcode and does not enforce instruction alignment, we
opted for not placing any functional code on the CBP. Instead, we use
the CBP as a trampoline by filling it with single-byte NOP instructions.
DPTI then leverages the page fault triggered by the first instruction after
the CBP 4○. The SGX driver catches the page fault and verifies that the
fault originates from the first instruction after the CBP. If this is the case,
the driver switches the address space back to the non-isolated mapping.

Interrupts A special case is an asynchronous enclave exit due to an
interrupt or fault. The CPU stores the enclave state, hands control to the
interrupt or fault handler, and then resumes the enclave using an ENCLU

instruction. As this instruction has to be mapped, we place it on the
CBP. We verified that a misaligned jump into this instruction cannot be
exploited.

Data Bridges and Stack DPTI must be aware of the pages used
for data exchange between the enclave and host application, hence the
dedicated DBPs. These DBPs are defined when setting up the isolation.
Note that DPTI works on page granularity. Thus, the user must ensure
that the data marked as DBPs is aligned and padded to the page boundary
to ensure no additional data is exposed.

Before entering the isolation, DPTI aligns the stack pointer to a page
boundary, allowing isolation of pages above the thread’s stack pointer.
The stack pages below the aligned stack pointer are accessible from within
the isolation, as the SGX-SDK uses the user application’s stack to pass
arguments to OCALLs. However, these pages do not contain any data the
application uses after the enclave returns. If destroyed stack frames were
used for sensitive data, they should be manually zeroed before entering
the enclave. When returning to the user application, DPTI verifies that
the stack and the base pointer match the values stored when entering the
enclave, ensuring that the enclave did not alter the stack (cf. Section 5.2).

Page Fault Handling Page faults on EPC pages are allowed, as they
can be lazily mapped. Page faults on host-application pages from isolated
threads are only allowed on the first instruction of the page after the CBP,
and the signal handler. Otherwise, the enclave attempted to access data
not marked as DBP or jumped to an isolated code page with the EEXIT

instruction, leading to a termination of the enclave. Note that DPTI can

270 Chapter 10. Domain Page-Table Isolation

distinguish a fault generated inside an enclave from a malicious attempt
to execute the signal handler directly.

Optimizations

We propose an optimization that can be used if the application does not
require the stat syscall, or if an untrusted application cannot abuse this
syscall. Instead of switching from the SGX domain to the non-isolated
domain using a relatively slow page fault (cf. Sections 5.2 and 6.1), we
can rely on a syscall.

While placing a syscall instruction on the CBP could potentially lead
to exploitation of this instruction, we utilize the nature of the EEXIT

instruction. This instruction requires the RAX register to be set to 4.
Hence, an attacker can only execute the stat syscall. This syscall typically
does not allow any control over an application, nor does it allow to leak
valuable information. To communicate with the driver, we hardcode the
necessary register values before the syscall. Thus, the enclave can only
execute the syscall communicating with the driver or the stat syscall by
jumping to the syscall instruction.

5 Evaluation

In this section, we evaluate DPTI based on our two use cases, enhanced
syscall filtering (Section 4.1) and SGX-protection domain (Section 4.2),
in terms of security and performance.

5.1 Enhanced Syscall Filtering

We evaluate the performance (Section 5.1) and security (Section 5.1) of
both variants of DPTI, clearly showing advantages and disadvantages of
DPTI-Stash and DPTI-Freeze.

Performance Evaluation

We first evaluate the performance when executing a single syscall with
reject filters for other syscalls. Second, we analyze the overall performance
on various real-world applications with simple allow/reject filters. We
compare the results to an unsandboxed version and one using seccomp.
Hence, we only evaluate cases that are supported by seccomp. Third, we
analyze the performance impact of our newly proposed method for deep
argument filtering. Finally, we perform an in-depth analysis of the various

5. Evaluation 271

Vanilla Seccomp DPTI
100
200
300
400
500

296 340 376
301 346 381

C
y
cl

es

min average

Figure 10.4: Syscall latency with no, seccomp-, and DPTI-based filtering over
1 million iterations of the getppid syscall.

steps discussed in Section 4.1, i.e., resolving page tables, bit manipulation,
TLB flush, and the string comparison, further substantiating the previous
analysis results.

Setup The micro- and macrobenchmark are performed on an Intel i7-
4790K running Ubuntu 21.04 with kernel version 5.13 at a stable frequency
of 4 GHz. All other experiments are performed on an Intel Skylake i7-
6600U running Ubuntu 18.04.1 with kernel version 5.4.0-72-generic at a
stable frequency of 2.6 GHz. For seccomp, we rely on libseccomp (2.5.1)
to generate and install the filters, and enable the BPF JIT compiler.

Simple Syscall-filtering Benchmark We microbenchmark the execu-
tion time when filtering a simple syscall (getppid). We compare the results
to an unsandboxed (vanilla) application and one using seccomp. getppid
is a fast syscall without side effects used by previous work and kernel
developers [9, 11, 38]. As this experiment does not involve deep argument
filtering, there is no difference between DPTI-Stash and DPTI-Freeze.

The sandboxed benchmark application allows 8 and blocks 341 syscalls
using simple allow/reject filters. We measure the average execution time
of the syscall in cycles over 1 000 000 executions. We show the results of
this experiment in Figure 10.4.

The average execution of a vanilla getppid syscall requires 296 cycles
and 346 cycles (+16.9 %) with seccomp active. With DPTI, the average
execution time is 381 cycles (+28.7 %). Hence, seccomp outperforms
DPTI in our microbenchmark. This is to be expected as seccomp is
a highly-optimized component of the Linux kernel, while DPTI is not
optimized for speed and is implemented as a kernel module. We expect
that an in-kernel implementation can achieve at least similar performance
as seccomp.

272 Chapter 10. Domain Page-Table Isolation

T
a
b

le
1
0
.1

:
T

h
e

resu
lts

of
ou

r
ru

n
tim

e
p

erform
an

ce
evalu

ation
of

u
n

san
d

b
ox

ed
,

seccom
p

-
an

d
D

P
T

I-san
d

b
ox

ed
ap

p
lication

s
w

ith
o
u
t

d
eep

a
rg

u
m

en
t

fi
lterin

g
.

O
v
erh

ea
d

sh
ow

s
th

e
p

ercen
ta

g
e

ov
erh

ea
d

co
m

p
a
red

to
o
u
r

b
a
selin

e,
i.e.,

a
n

u
n
san

d
b

ox
ed

version
of

th
e

resp
ective

ap
p
lication

.
S
am

p
le

sizes
d
iff

ers
for

variou
s

ap
p
lication

s
d
u
e

to
th

e
d
iff

eren
ce

in
req

u
ired

ru
n
tim

e.

S
o
ftw

a
re

S
a
m

p
le

S
iz

e
N

o
rm

a
l

T
im

e
/

S
E

M
S

e
c
c
o
m

p
T

im
e

(O
v
e
rh

e
a
d

)
/

S
E

M
D

P
T

I
T

im
e

(O
v
e
rh

e
a
d

)
/

S
E

M

b
u

sy
b

ox

d
iff

1
0

00
0

0
.00

15
s

/
3.3

74
×

1
0
−

7
0.0073

s
(386.67

%
)

/
5.493

×
10

−
7

0.002
s

(33.33
%

)
/

4.075
×

10
−

7

ls
1
0

00
0

0
.00

15
s

/
3.35

2
×

10
−

7
0.0073

s
(386.67

%
)

/
6.466

×
10

−
7

0.0021
s

(40.0
%

)
/

4.414
×

10
−

7

h
ead

1
0

0
00

0
.0

01
5

s
/

3
.60

5
×

10
−

7
0.0073

s
(386.67

%
)

/
6.040

×
10

−
7

0.002
s

(33.33
%

)
/

3.538
×

10
−

7

d
m

esg
1
0

00
0

0
.00

15
s

/
3
.3

55
×

1
0
−

7
0.0074

s
(393.33

%
)

/
2.201

×
10

−
6

0.002
s

(33.33
%

)
/

3.163
×

10
−

7

tru
e

10
0
0
0

0.00
15

s
/

3
.67

7
×

10
−

7
0.0073

s
(386.67

%
)

/
5.821

×
10

−
7

0.002
s

(33.33
%

)
/

3.567
×

10
−

7

cat
1
0

00
0

0
.0

01
5

s
/

3.59
3
×

10
−

7
0.0073

s
(386.67

%
)

/
8.072

×
10

−
7

0.002
s

(33.33
%

)
/

6.047
×

10
−

7

en
v

10
0
00

0.00
15

s
/

3
.54

1
×

1
0
−

7
0.0073

s
(386.67

%
)

/
6.257

×
10

−
7

0.002
s

(33.33
%

)
/

3.880
×

10
−

7

grep
10

0
00

0.0
01

7
s

/
3
.55

7
×

10
−

7
0.0075

s
(341.18

%
)

/
6.451

×
10

−
7

0.0022
s

(29.41
%

)
/

4.009
×

10
−

7

p
w

d
1
0

0
00

0
.0

01
5

s
/

3
.67

8
×

10
−

7
0.0073

s
(386.67

%
)

/
6.440

×
10

−
7

0.002
s

(33.33
%

)
/

3.642
×

10
−

7

git
d

iff
1
0

00
0

0
.00

4
s

/
1.4

2
1
×

10
−

6
0.0077

s
(92.5

%
)

/
3.475

×
10

−
6

0.0061
s

(52.5
%

)
/

2.216
×

10
−

6

statu
s

1
0

00
0

0
.00

4
s

/
1
.01

0
×

1
0
−

6
0.0076

s
(90.0

%
)

/
3.392

×
10

−
6

0.006
s

(50.0
%

)
/

1.821
×

10
−

6

ff
m

p
eg

con
vert

1
00

9
.57

95
s

/
3
.1

80
×

1
0
−

2
9.5817

s
(0.02

%
)

/
3.311

×
10

−
2

9.6609
s

(0.85
%

)
/

3.727
×

10
−

2

ch
an

ge
1
00

9.36
27

s
/

3
.4

19
×

10
−

2
9.494

s
(1.4

%
)

/
2.336

×
10

−
2

9.4412
s

(0.84
%

)
/

3.438
×

10
−

2

ex
tract

10
0

6
.3

68
4

s
/

2
.63

8
×

10
−

2
6.4448

s
(1.2

%
)

/
2.119

×
10

−
2

6.4039
s

(0.56
%

)
/

2.043
×

10
−

2

crop
1
00

6.71
68

s
/

1
.24

8
×

10
−

2
6.8011

s
(1.26

%
)

/
2.026

×
10

−
2

6.8055
s

(1.32
%

)
/

2.013
×

10
−

2

in
fo

10
0
00

0.0
06

2
s

/
1
.41

9
×

10
−

6
0.0409

s
(559.68

%
)

/
2.015

×
10

−
6

0.0405
s

(553.23
%

)
/

7.732
×

10
−

6

rem
ove

10
0

9
.2

06
5

s
/

2.44
1
×

1
0
−

2
9.2666

s
(0.65

%
)

/
2.462

×
10

−
2

9.3499
s

(1.56
%

)
/

2.486
×

10
−

2

5. Evaluation 273

Real-world Application Benchmark Microbenchmarks show the
specific effects of DPTI on syscalls, but do not allow reasoning about
real-world performance impact. As no deep argument filtering is used,
there is no difference between DPTI-Stash and DPTI-Freeze.

To determine the application’s syscalls, we extend existing automated
approaches [11, 20, 31] to support DPTI. Our baseline is a vanilla version
of the respective application. We show the result of our evaluation in
Table 10.1. The commands used for each application are provided in
Table 10.4 in Appendix B.

We first consider the results of small applications and simple tasks
of large ones, i.e., busybox, git, the ffmpeg info command. For these
applications, the overhead appears huge, ranging between 29 % and 554 %
for DPTI. Still, for all cases, the overhead is lower than for seccomp where
we measured an overhead between 90 % and 560 %. For more complex
tasks in ffmpeg, the overhead never exceeds 1.56 % with DPTI, and 1.4 %
for seccomp. The reason why seccomp performs worse in the benchmarks
of small applications is due to the larger overhead in setting up the more
complex cBPF filters, which must be verified and converted to eBPF during
the setup. In large applications, this complex setup does not impact the
overall performance. The benchmark shows that even an unoptimized
kernel module version of DPTI can achieve similar performance to the
highly optimized seccomp.

Deep Argument Filtering To evaluate the performance of DPTI
for memory isolation, we use both variants for deep argument filtering.
We consider two simple syscalls, openat and write. For both syscalls, we
measure the average execution time of the syscall, including deep argument
filtering, over 100 000 invocations. As a syscall can allow multiple strings,
we consider different number of strings in the filter, placing the correct
one at its end, i.e., for n strings in the filter we require n comparisons.
As a baseline, we measure the syscall execution time without argument
checking.

Figure 10.5 shows the results of this experiment. Deep argument
filtering has a non-negligible performance overhead: With DPTI-Stash, a
single string check increases the execution time of the openat syscall from
920 to 2038 cycles. This increase is mostly due to the one-time overhead
of isolating the memory region. With 10 string checks, the execution
time is only slightly higher (2351 cycles). In all cases, DPTI-Stash and
DPTI-Freeze perform similarly.

274 Chapter 10. Domain Page-Table Isolation

0 1 10 100
0

0.2
0.4
0.6
0.8

1 ⋅10
4

91
9 2,

19
0

2,
53

3 4,
86

8

91
2 2,

25
9

2,
57

6 5,
45

8

Number of filters

C
y
cl

es

US RW

(a) openat

0 1 10 100
0
1
2
3 ⋅10

4

50
3 1,

82
9

3,
11

2 15
,4
80

49
0 1,

90
7

3,
21

6 15
,7
14

Number of filters

C
y
cl

es

US RW

(b) write

Figure 10.5: Cycles required for string filtering for openat and write syscalls
using DPTI, either using the US or RW bit. The x-axis indicates
the position of the allowed string within the filter for the syscall,
i.e., the number of strings that need to be checked until a match
occurs with the current argument.

In-Depth Analysis of Filtering Components To analyze the over-
head further, we perform an in-depth analysis to determine the overhead
of each individual step, i.e., resolving page tables, bit manipulation, TLB
flush, and the actual string comparison.

We instrument DPTI-Stash and DPTI-Freeze to measure the required
cycles for each step. We use the same syscalls as in the previous experiment
and filter outliers—detected using the modified z-score—by replacing them
with the median. Table 10.2 shows the results of the evaluation. The
majority of the overhead is introduced by the page-table flush, which
is necessary to perform twice. The string check differs between the two
evaluated syscalls due to different string lengths used in the evaluation.
Clearing the additional bit in the kernel data structures for DPTI-Freeze
has no impact. The execution time of all steps roughly sums up to the time
difference shown for the case with no and one string filter in Figure 10.5.
More efficient caching of page-table translations can potentially further
improve the performance.

5. Evaluation 275

Table 10.2: Cycle amounts of the individual components of our deep argument
filtering over 100 000 executions of the respective syscall. Outliers
were replaced with the median.

Syscall Resolve PT Manipulate PT Flush PT Check

openat
Stash

cycles 86 27 458 40
SEM 0.0886 0.0028 0.0533 0.0024

Freeze
cycles 81 28 473 46
SEM 0.0939 0.0041 0.0683 0.0028

write
Stash

cycles 45 27 396 137
SEM 0.1751 0.0028 0.0442 0.0442

Freeze
cycles 49 27 422 185
SEM 0.2662 0.0034 0.1067 0.1480

2 5 10

3
,0

31

5
,6

19 10
,0

25

3
,2

87

6,
10

3

10
,8

18

Number of alias mappings

US
RW

(a) openat

2 5 10

2,
7
08

5
,2

67

9
,4

83

2,
9
08

5
,7

88 10
,4

5
3

Number of alias mappings

US
RW

(b) write

Figure 10.6: Cycles required for string filtering with alias mappings for openat
and write syscalls using DPTI. The x-axis indicates the number
of alias mappings for the filtered syscall argument, including the
mapping used in the syscall itself.

Alias Mappings To evaluate the overhead of alias mappings, we build
on our previous benchmark with the openat and write syscalls. Each syscall
uses a single string filter, and we vary the number of alias mappings to
the syscall argument, i.e., 2, 5, and 10 mappings. Each syscall is executed
100 000 times and the average execution time is taken. Figure 10.6 shows
the result of this evaluation.

Unsurprisingly, the average execution time of a syscall increases with
the number of alias mappings that have to be modified. In combination
with the results of the previous in-depth analysis (Table 10.2) and our
performance analysis of non-alias mappings in syscalls (Figure 10.5), it is
clear that the majority of the overhead is due to the additional, necessary
TLB flushes. Improving the performance of TLB flushes automatically
improves the performance of our filtering [58]. Note that this overhead

276 Chapter 10. Domain Page-Table Isolation

only materializes in the case of at least 2 alias mappings to the same page;
otherwise the overhead shown in Figure 10.5 applies.

We also investigate the performance of our tracking itself, which shows
that adding a new mapping on average adds 1222 cycles (N=100 000,
+47.5 %) to the page fault. Most of this overhead, though, is not due to the
tracking itself but a limitation of our proof-of-concept implementation as
we need to probe (kretprobe) the page-fault handler. A full implementation
can perform the tracking by extending it directly, removing on average
638 cycles of overhead from the page fault. Hence, the overhead of the
tracking itself is 24.8 %. Additionally, a full implementation can modify
existing kernel data structures for a more efficient tracking mechanism.

As we observe a more significant overhead when an alias mapping is
used in a syscall, we investigate whether such mappings are frequently
used in syscalls in real-world applications. For this evaluation, we rely
on the applications shown in Table 10.1, i.e., git, busybox, and ffmpeg,
as well as visudo (Section 5.1). We track the number of alias mappings
created over the execution of each one of our commands and whether such
a mapping is then used in a string filter. This analysis revealed that not
a single alias mapping is created and hence not used in a string filter. For
these applications, there is no additional overhead. We leave a broader
analysis of alias mappings in real-world applications for future work.

Security Evaluation

For the security evaluation, we show that clearing the US- or the RW-bit
prevents data modification. We show that we can perform the deep argu-
ment check without interference from user space, i.e., that our approach
does not suffer from TOCTOU vulnerabilities. Finally, we discuss the
security implications of bringing user-controlled pages into the kernel.

Modifying Bits in Page Tables To ensure that the MMU-based
isolation is reliable, we create a simple program that allocates a page of
memory and then accesses it, observing, as expected, no crash. In the case
of DPTI-Stash, we then use PTEditor [83] to clear the US-bit and access
it again. As expected, the second access now results in a crash due to a
privilege boundary violation. For DPTI-Freeze, we modified PTEditor
such that it clears the VM WRITE bit in the vm flags of the associated
vm area struct. While reading from the page still works, storing data to
the page results in a crash due to the violation of the write protection.

5. Evaluation 277

Hence, clearing the respective bits prevents another thread from modifying
the data once the protection bits have been set appropriately.

Eliminating TOCTOU While the previous experiment shows that the
underlying principle works, we verify that it can prevent the exploitation
of TOCTOU vulnerabilities. In this experiment, we try to re-direct an
openat syscall such that a wrong file is opened. We create a multi-threaded
application that uses filters that only allow opening the file file1. Thread
1 tries to open the specified file and print its content. Simultaneously,
Thread 2 tries to modify the filename while the syscall is executed. In
a vanilla or seccomp-based version, the syscall continues and opens the
wrong file. With DPTI, the page containing the syscall is unmodifiable
for the user. Hence, Thread 2 triggers a segfault due to the illegal access,
and the thread is stalled, mitigating the attack.

User-space Pages in Kernel Space When using DPTI-Stash, our
enhanced filtering effectively brings a user-controlled page into the kernel
space (cf. Section 4.1). To ensure that this cannot be exploited to inject
arbitrary code into the kernel, DPTI-Stash first verifies that the page is
not marked as executable. As DPTI-Stash already has to modify the page-
table entry for isolating the page, it can additionally clear the executable
bit. Hence, as long as the page resides in the kernel space, it is not
executable anymore. A thread cannot access the page while it is isolated;
hence, removing the execute permission does not require any additional
handling. After the syscall is done, DPTI-Stash can simply restore the
executable bit. Thus, an attacker cannot exploit DPTI-Stash to inject
executable pages into the kernel. Note that the kernel always has to
deactivate SMAP to access the syscall parameters, enabling the access
to the entire user-space memory during this time. Hence, temporarily
bringing one data page into the kernel during a syscall does not increase
the attack surface.

We consider the possibility of DPTI-Stash potentially weakening or
breaking KASLR due to the user-space page being brought into the kernel.
As it is only a data page, it can only be used as a stack page in a code-reuse
attack where the attacker places the return addresses of the ROP gadgets.
This already requires a KASLR break as the ret instruction can only
return to absolute addresses. Hence, we can conclude that DPTI-Stash
does not weaken or break KASLR.

278 Chapter 10. Domain Page-Table Isolation

Visudo

To demonstrate how deep argument filtering can improve the security of
the system, we harden the visudo application with DPTI. visudo is used
to edit the sudoers file with automatic validity checks using an editor from
a pre-defined set of editors. It can also be used to open other files than
the sudoers file by using a command-line switch. Interestingly, the tool’s
manpage already mentions that this behavior can be a security hole:

“if visudo is configured with the --with-env-editor option or the
env editor Default variable is set in sudoers, visudo will use any the
editor defines by VISUAL or EDITOR. [..] this can be a security hole
since it allows the user to execute any program they wish simply by setting
VISUAL or EDITOR.”

For the evaluation, we restrict visudo to only allow the vi editor to open
the sudoers files as well as files necessary for vi to work, e.g., configuration
files. Hence, in addition to allowing syscalls required for visudo, we also
need to allow syscalls that vi requires. In total, we generate 52 simple
syscall filter rules without any argument filters. We allow the execve
syscall with a deep argument filter on /usr/bin/vi, hence an invocation
with a different editor is prevented. Naturally, the list of pre-defined
editors can be extended, and the restriction on vi is simply done to ease
our proof-of-concept implementation. We add a deep argument filter
on the openat syscall such that it only allows opening the sudoers file
and all strictly necessary library and file dependencies of visudo and vi.
This results in 47 deep argument filters for openat. In total, we define
100 filters. Although the simple syscall filters are supported by seccomp,
seccomp cannot restrict access to files and editors as filters based on string
comparisons are unsupported.

To demonstrate that the resulting visudo binary is still able to perform
its job, we use it to modify the sudoers file using vi. When doing that,
we did not observe a single crash, and the task completes successfully.
Still, when we try to override the editor or try to manipulate another file,
our module detects that the specified filter rules are being violated and
kills the application. Hence, DPTI can be used to close the previously
mentioned security hole.

We evaluate the performance of our protected version of visudo over
10 000 executions. For the evaluation, we measure the performance of
the non-interactive verification mode of visudo. Nevertheless, the filtering
is the same as in the interactive modification mode, i.e., filters for the
openat syscall are still checked. The vanilla version requires, on average,

5. Evaluation 279

Table 10.3: Comparison of the two variants of DPTI. Write and read possible
only consider the ability of the user-space application to read or
write, not the kernel.

Approach Modified Bit Read possible Write Possible Tracking

Stash US 8 8 8

Freeze RW / VM WRITE 3 8 3

12.8 ms, DPTI-Stash 13.2 ms, and DPTI-Freeze 13.0 ms, demonstrating a
negligible overhead.

Comparison DPTI-Stash and DPTI-Freeze

While both variants of DPTI solve the problem of deep argument filtering,
they differ in what MMU mechanism enforces the protection. As the used
bits differ in their semantics, the two variants exhibit different properties,
which we discuss in more detail now. The results of our comparison are
presented in Table 10.3.

DPTI-Freeze requires manipulation of bits in two different locations,
but has the advantage that a user-space thread can read data from the
modified page, which is not possible with DPTI-Stash. For DPTI-Freeze,
we need to explicitly track the previous permissions of the modified page to
restore the correct state after the syscall completes, which is not necessary
for DPTI-Stash. However, the additional bit to modify does not introduce
any overhead (Table 10.2).

In both cases, writes are not possible from user space. Additionally,
DPTI-Freeze blocks writes from the kernel. While this does not provide
security benefits, it can be disadvantageous if the kernel wants to write to
the isolated page. However, we have not encountered such a case in our
tests.

5.2 SGX-Protection Domain

We evaluate the performance (Section 5.2) and the security guarantees
(Section 5.2) of the SGX protection domain, including the more optimized
version from Section 4.2.

Performance

As page table mappings are enforced by hardware, no additional perfor-
mance overhead is observed during the regular execution of an enclave.

280 Chapter 10. Domain Page-Table Isolation

ECALL OCALL
0

1

2

3

⋅10
4

16
,2
48

6,
81

3
19
,4
91

9,
81

717
,8
71

8,
45

1
C

y
cl

es

non-isolated page fault syscall

Figure 10.7: Microbenchmark results for ECALLs and OCALLs for a non-
isolated enclave, one using a page fault for ending isolation, and
one using a syscall instead of the page fault.

The protection domain alters the page tables during enclave enter and exit,
affecting the latency of enclave transitions only. We evaluate the overhead
using isolation:sgxbench [75]. For our evaluation, we restrict ourselves to
the empty ECALL and empty OCALL benchmark of isolation:sgxbench as
these model the worst-case scenario for our protection. These benchmarks
perform ECALLs or OCALLs without any code in the function.

Setup We perform our benchmarks on an Intel Core i5-8265U CPU
with a fixed frequency of 2.9 GHz running Ubuntu 20.04 with Linux kernel
5.8.0. We compare DPTI-Stash to a reference URTS SGX-PSW library as
baseline, and execute each benchmark 2 000 000 times. We also evaluate
the performance improvements of the slightly less secure, optimized version
(cf. Section 4.2).

Results Figure 10.7 shows the benchmark results. We observe a latency
increase of 19.9 % for ECALLs and 44.0 % for OCALLs. When using
the optimized version using the syscall instruction, we observe only an
overhead of 9.9 % for ECALLs and 24.0 % for OCALLs. This improvement
is solely caused by the different execution times of the page-fault handler
and the syscall handler. We discuss how future work can optimize our
implementation in Section 6.1. In similar microbenchmarks, SGXJail [97]
had an overhead of 41.4 % for ECALLs and 45.2 % for OCALLs. Hence,
as shown by the microbenchmarks, optimized DPTI outperforms SGXJail
by 22 % for ECALLs and 14.6 % for OCALLS.

5. Evaluation 281

Security

In this section, we evaluate the security the DPTI-Freeze- and DPTI-
Stash-based enclave isolation.

Data-Only Attacks A non-isolated enclave can read or modify host
application memory, hence allowing a malicious enclave to perform data-
only attacks. DPTI prohibits data-only attacks by limiting write access
to host pages, allowing the enclave to modify pages marked explicitly as
DBPs only. As these pages are, by definition, used to pass data from
and to a possibly untrusted enclave, we require the host to verify the
correctness of the received data.

SGX-ROP To perform ROP-based attacks, the enclave needs to scan
the host application for gadgets to build a ROP chain and overwrite the
stored return address to execute the chain [84]. Both DPTI-Freeze and
DPTI-Stash prohibit modifications to the return address on the stack by
aligning the stack downwards before entering isolation, and restricting
access to the upper stack pages containing the return address. As the
enclave can freely modify stack and base pointer upon leaving isolation,
DPTI verifies that the latter was not altered. For data pushed on the
stack, we consider the two reasons a thread can exit an enclave: First, the
thread can exit the enclave to return from an ECALL. In this case, we
verify that the stack pointer was restored correctly and restore the saved
registers before executing the return instruction. Second, the enclave
exited to perform an OCALL. The data is pushed onto the user stack,
and the protection only verifies that the stack pointer grew downwards.
No return instruction is executed directly after the isolation end as an
OCALL adds additional call frames instead of removing them.

EEXIT Destination The EEXIT instruction allows arbitrary return
locations outside the SGX enclave, allowing returns to arbitrary, potentially
missaligned, instructions [97]. We consider two cases: First, the enclave
returns to a page different than the CBP, raising a page fault. As discussed
in Section 4.2, this results in our page-fault handler raising a segmentation
fault. Second, the enclave returns to the CBP, potentially misaligned.
This poses no problem as the CBP is only filled with NOP instructions
following the EENTER.

282 Chapter 10. Domain Page-Table Isolation

Data Confidentiality DPTI-Stash provides data confidentiality as
host application pages are not mapped in the isolated address space.
DPTI-Freeze does not guarantee confidentiality as pages are just mapped
as read-only, allowing the enclave to read host data, but it still prevents
malicious modification.

Multithreading and TOCTOU Multiple threads inside the same
enclave share an isolated mapping (cf. Section 4.2). This does not pose a
security problem, as threads within an enclave already share the enclave
memory. Nevertheless, we ensure that multiple threads running inside the
enclave cannot alter each other’s stack during an OCALL by removing
that thread’s stack from the isolated mapping.

6 Discussion

In this section, we discuss future work and related work.

6.1 Future Work

Enhanced Syscall Filtering The largest bottleneck for efficient deep
argument filtering are TLB flushes, which can be eliminated by employ-
ing protection keys. Previous work has explored the possibility of using
such keys in the kernel [35]. A more recent patch set has even pro-
vided protection-key functionality to the kernel [15]. As protection keys
contradict the aim of this work for providing a method for commodity,
off-the-shelve systems, they were not used. Similarly, IMIX [27] could
improve the performance of our deep argument filtering, but no hardware
supports it. Future work can investigate whether seccomp can be extended
to include our approach directly. To generate tight filters for complex
arguments, the automated generation of syscall filter rules [11, 20, 31] can
be extended to extract arguments automatically.

SGX-Protection Domain Section 5.2 shows that the overhead between
raising a page fault and handling it is quite high. Merging the proof-of-
concept directly into the kernel would increase the performance by greatly
reducing the amount of code executed.

6. Discussion 283

6.2 Related Work

Syscall Filtering Multiple works have been published on syscall check-
ing [2, 3, 17, 25, 29, 32, 34, 46, 59, 72, 74, 93]. Some rely on kernel
tracing [2, 3, 29, 34, 46, 74, 93], but the performance suffers from ad-
ditional context switches. Hence, Linux relies on seccomp to perform
syscall-filtering if it is requested by a developer. As discussed, seccomp
requires a developer to manually identify the syscalls required by an
application. Several recent works have investigated the feasibility of auto-
matically identifying and generating these filter rules, eliminating the need
for manual analysis [11, 20, 31]. While seccomp improves the security, it
negatively affects the performance. Recent work has therefore proposed
changing how seccomp handles filters [38, 88] or proposed additional
hardware features [88] to improve the performance. Nevertheless, deep
argument filtering is still not supported as of Linux 5.11. Salaün [78]
restricts ambient rights, such as global filesystem accesses, for a set of
processes. This is an orthogonal approach as it does not attempt to
filter syscalls, but instead focuses on access control on kernel objects
directly [14]. More recent work proposed to create on-demand snapshots
and copies of accessed data, ensuring that reads to a userspace object
during a syscall always returns the same value [7]. While this can be used
for deep argument filtering, it cannot be used to protect against malicious
enclaves. Recently, the usage of syscall sequences and origins has been
explored for syscall-flow-integrity protection [10]. DPTI can extend this
work to provide deep argument filtering.

Memory Isolation Memory isolation is a well-researched field where
proposals can be grouped into OS-, virtualization-, hardware-, language-
and runtime-based techniques. While memory isolation can be easily
achieved on the OS level by simply placing the necessary parts into
separate processes, this does incur a significant overhead. To prevent this
significant overhead, recent work provides additional OS abstractions [18,
39, 61] that together with compiler support [13] or runtime analysis tools [8]
make it feasible to isolate long-term signing keys in a web server. Other
work has proposed to use a hypervisor for isolating memory. Dune [6]
allows a user-space process to use the Intel VT-x virtualization extensions
to isolate compartments. Other work demonstrated how the VMFUNC
instruction can be used to switch extended page tables to achieve in-
process isolation [54, 62]. SIM [87] uses VT-x for isolating a security
monitor in an untrusted VM.

284 Chapter 10. Domain Page-Table Isolation

Memory isolation can also be enforced by the hardware, for instance,
by Intel SGX or ARM TrustZone. Previous work used SGX to protect
internal data structures of just-in-time compilers to prevent code-injection
attacks [26]. While the hardware enforces this isolation, the switching
overhead is similar to other approaches [54]. Other works proposed addi-
tional x86 ISA extensions to add load and store instructions that must be
used to access data in a safe region [27, 68]. These approaches additionally
require CFI [1] to protect against control-flow hijack attacks [89]. Several
works have relied on Intel Memory Protection Keys (MPK) to facilitate
more efficient memory isolation [37, 54, 71, 79, 91]. However, Intel MPK
is not used in the kernel and not available for most commodity systems.
It is only available in a limited subset of shipped processors since the Intel
Xeon Skylake microarchitecture. Creative use of page-table entries for
in-process isolation is a technique that has been explored [27, 54], but
these solutions require modifications of the ISA or the re-purposing of
ignored or reserved bits in page tables. Consequently, they can only be
applied to future hardware but not to commodity systems.

Memory isolation can also be ensured through static checks in
memory-safe languages. In unsafe languages, this isolation can be provided
through software fault isolation, where runtime checks are added by the
compiler or through binary rewriting [67, 94]. Naturally, this imposes
a performance overhead while not protecting against control-flow hijack
attacks, making it necessary to combine it with CFI. Recent work has
explored the possibility of so-called zero-cost transitions between normal
and sandboxed code for well-structured code, but still requires CFI [53].
Contrary to previous solutions for memory isolation [27, 37, 54, 68, 71,
79, 91], DPTI does not require ISA extensions or re-purposing of ignored
page-table bits. Instead, we only rely on existing functionality and bring
our enhanced filtering to commodity systems. DPTI retrofits sandboxing
mechanisms with strategies that previous works have explored against
microarchitectural attacks [36, 40].

Intel SGX The memory isolation of SGX is asymmetric, i.e., while
enclave memory is inaccessible for the operating system and the host
application, the enclave has full access to the data and code of the host
application. Schwarz et al. [84] showed that untrusted SGX enclaves can
rewrite the host application memory to impersonate the host and execute
arbitrary syscalls. To mitigate such attacks, Weiser et al. [97] proposed
SGXJail, which contains two ways to isolate enclaves, either isolation
through another process or through a slightly modified variant of Intel

7. Conclusion 285

MPK. Other works have proposed to monitor the I/O behavior of enclaves
to detect a potential attack [16, 19]. Another proposed approach is to
analyze enclave code before running it, but this is not possible for generic
loaders [16]. Hence, Costan and Devadas [16] proposed to force generic
loader enclaves to embed malware-analysis code into the enclave, but it is
unknown how effective this approach is.

Other approaches improve the security of the enclave itself [55, 85,
101], but such approaches are orthogonal to our approach as they assume
a malicious host or OS. An SFI-based approach has been proposed by
Ryoan [41], which requires recompilation of the enclave using SFI, which
is not necessary in our approach.

7 Conclusion

In this paper, we proposed DPTI, a security-domain isolation mechanism
for commodity off-the-shelf CPUs. DPTI provides two mechanisms for
time-limited changes to the memory isolation at security-critical points,
called DPTI-Freeze and DPTI-Stash. While DPTI-Freeze makes memory
temporarily read-only, DPTI-Stash temporarily removes access permis-
sions. We evaluated the versatility of DPTI in two scenarios. In the first
scenario, DPTI enables more fine-grained syscall filtering than seccomp
while providing stronger memory-safety guarantees that allow support-
ing deep argument filtering. In the second scenario, DPTI efficiently
confines SGX enclaves, outperforming existing solutions by 14.6 %-22 %
and removing hardware requirements. Our results show that DPTI is a
viable mechanism that can be used to isolate domains within applications
without relying on special hardware instructions or extensions.

Acknowledgments

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 681402). Additional funding was provided
by generous gifts from ARM, Amazon, and Intel. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding parties.

286 Chapter 10. Domain Page-Table Isolation

Table 10.4: The specific commands which were used for evaluating the perfor-
mance of an unsandboxed, seccomp-, and DPTI-sandboxed version
of the respective application.

Software Command

busybox

diff busybox diff cat.sh grep.sh
true busybox true
env busybox env
ls busybox ls
dmesg busybox dmesg
cat busybox cat test
head busybox head -n 100 test
grep busybox grep -ir python3 .
pwd busybox pwd

git
diff git diff
status git status

ffmpeg

extract ffmpeg g -i video.mp4 -r 1 -f image2 image-%2d.png -y -hide banner
convert ffmpeg g -i video.mp4 video.avi -y -hide banner
remove ffmpeg g -i video.mp4 -an output.mp4 -y -hide banner
crop ffmpeg g -i video.mp4 -filter:v ’crop=640:480:200:150’ output.mp4 -y -hide banner
info ffmpeg g -hide banner -i video.mp4
change ffmpeg g -i video.mp4 -filter:v scale=1280:720 -c:a copy output.mp4 -y -hide banner

B Real-world Application Commands

In Table 10.4, we show the exact commands that were used for the
evaluation of the real-world applications in Section 5.1.

References 287

References

[1] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti.
“Control-Flow Integrity.” In: CCS. 2005.

[2] Anurag Acharya and Mandar Raje. “MAPbox: Using Parame-
terized Behavior Classes to Confine Untrusted Applications.” In:
USENIX Security Symposium. 2000.

[3] Albert Alexandrov, Paul Kmiec, and Klaus Schauser. Consh: Con-
fined Execution Environment for Internet Computations. Tech. rep.
The University of California, Santa Barbara, 1999.

[4] Android. Application Sandbox. 2021. url: https://source.android.
com/security/app-sandbox.

[5] Michael Backes and Stefan Nürnberger. “Oxymoron: Making Fine-
Grained Memory Randomization Practical by Allowing Code Shar-
ing.” In: USENIX Security Symposium. 2014.

[6] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. “Dune: Safe User-level Access
to Privileged CPU Features.” In: OSDI. 2012.

[7] Atri Bhattacharyya, Uros Tesic, and Mathias Payer. “Midas: Sys-
tematic Kernel TOCTTOU Protection.” In: USENIX Security
Symposium. 2022.

[8] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp.
“Wedge: Splitting Applications into Reduced-Privilege Compart-
ments.” In: NSDI. 2008.

[9] Davidlohr Bueso. tools/perf-bench: Add basic syscall benchmark.
2019. url: https://lore.kernel.org/patchwork/patch/1048777/.

[10] Claudio Canella, Sebastian Dorn, Daniel Gruss, and Michael
Schwarz. “SFIP: Coarse-Grained Syscall-Flow-Integrity Protection
in Modern Systems.” In: arXiv:2202.13716 (2022).

[11] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
“Automating Seccomp Filter Generation for Linux Applications.”
In: CCSW. 2021.

[12] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: CCS. 2010.

[13] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. “Shreds: Fine-
Grained Execution Units with Private Memory.” In: S&P. 2016.

https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://lore.kernel.org/patchwork/patch/1048777/

288 Chapter 10. Domain Page-Table Isolation

[14] Kernel development community. Landlock: kernel documentation.
2020. url: https : / / landlock . io / linux - doc / landlock - v21 /

security/landlock/kernel.html.

[15] Jonathan Corbet. Memory protection keys for the kernel. 2020.
url: https://lwn.net/Articles/826554/.

[16] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In:
Cryptology ePrint Archive, Report 2016/086 (2016).

[17] Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitaram.
Chakravyuha (CV): A sandbox operating system environment for
controlled execution of alien code. Tech. rep. 1997.

[18] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. “Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation.” In: ASPLOS.
2015.

[19] Shaun Davenport and Richard Ford. SGX: the good, the bad and
the downright ugly. 2014. url: https://www.virusbulletin.com/
virusbulletin/2014/01/sgx-good-bad-and-downright-ugly.

[20] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fon-
seca, and Vasileios P. Kemerlis. “sysfilter: Automated System Call
Filtering for Commodity Software.” In: RAID. 2020.

[21] Jake Edge. A seccomp overview. 2015. url: https://lwn.net/

Articles/656307/.

[22] Jake Edge. Deep argument inspection for seccomp. 2019. url: https:
//lwn.net/Articles/799557/.

[23] Jake Edge. Seccomp and deep argument inspection. 2020. url:
https://lwn.net/Articles/822256/.

[24] Bryan Ford and Russ Cox. “Vx32: Lightweight User-level Sandbox-
ing on the x86.” In: Usenix ATC. 2008.

[25] T. Fraser, L. Badger, and M. Feldman. “Hardening COTS software
with generic software wrappers.” In: DISCEX. 2000.

[26] Tommaso Frassetto, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. “JITGuard: Hardening Just-in-Time Com-
pilers with SGX.” In: CCS. 2017.

[27] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. “IMIX: In-Process Memory Isolation EXten-
sion.” In: USENIX Security Symposium. 2018.

https://landlock.io/linux-doc/landlock-v21/security/landlock/kernel.html
https://landlock.io/linux-doc/landlock-v21/security/landlock/kernel.html
https://lwn.net/Articles/826554/
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/799557/
https://lwn.net/Articles/799557/
https://lwn.net/Articles/822256/

References 289

[28] Tal Garfinkel. “Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools.” In: NDSS. 2003.

[29] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. “Ostia: A
Delegating Architecture for Secure System Call Interposition.” In:
NDSS. 2004.

[30] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. “Confine: Automated System Call Policy Generation
for Container Attack Surface Reduction.” In: RAID. 2020.

[31] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. “Temporal System Call Specialization for Attack
Surface Reduction.” In: USENIX Security Symposium. 2020.

[32] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and
Thomas E. Anderson. “SLIC: An Extensibility System for Com-
modity Operating Systems.” In: USENIX ATC. 1998.

[33] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: S&P. 2014.

[34] Ian Goldberg, David Wagner, Randi Thomas, Eric A Brewer, et al.
“A secure environment for untrusted helper applications: Confining
the wily hacker.” In: USENIX Security Symposium. 1996.

[35] Gravani, Spyridoula and Hedayati, Mohammad and Criswell, John
and Scott, Michael L. “Fast Intra-Kernel Isolation and Security
with IskiOS.” In: RAID. 2021.

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR.” In: ESSoS. 2017.

[37] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. “Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries.”
In: Usenix ATC. 2019.

[38] Tom Hromatka. seccomp and libseccomp performance improvements.
2018.

[39] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and
Mathias Payer. “Enforcing Least Privilege Memory Views for Mul-
tithreaded Applications.” In: CCS. 2016.

290 Chapter 10. Domain Page-Table Isolation

[40] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang.
“EPTI: efficient defence against meltdown attack for unpatched
VMs.” In: USENIX ATC. 2018.

[41] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. “Ryoan: A Distributed Sandbox for Untrusted Computa-
tion on Secret Data.” In: Usenix OSDI. 2016.

[42] Google Inc. Seccomp filter in Android O. 2017. url: https://

android-developers.googleblog.com/2017/07/seccomp-filter-

in-android-o.html.

[43] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[44] isolation:AppArmor. isolation:AppArmor: Linux kernel security
module. 2021. url: https://apparmor.net/.

[45] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. “Block Oriented Programming: Automating Data-Only
Attacks.” In: CCS. 2018.

[46] Kapil Jain and R Sekar. “User-Level Infrastructure for System
Call Interposition: A Platform for Intrusion Detection and Con-
finement.” In: NDSS. 2000.

[47] Vasileios Kemerlis. “Protecting Commodity Operating Systems
through Strong Kernel Isolation.” PhD thesis. Columbia University,
2015.

[48] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation.” In: USENIX
Security Symposium. 2014.

[49] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks.” In: USENIX Security Symposium. 2012.

[50] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. “V0LTpwn: Attacking x86 Processor In-
tegrity from Software.” In: USENIX Security Symposium. 2020.

[51] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors.” In: ISCA. 2014.

[52] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses.” In: arXiv:1807.03757 (2018).

https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://apparmor.net/

References 291

[53] Matthew Kolosick, Shravan Narayan, Conrad Watt, Michael
LeMay, Deepak Garg, Ranjit Jhala, and Deian Stefan. “Isola-
tion Without Taxation: Near Zero Cost Transitions for SFI.” In:
arXiv:2105.00033 (2021).

[54] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. “No Need to Hide: Protecting Safe Regions on
Commodity Hardware.” In: EuroSys. 2017.

[55] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan
Trach, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.
“SGXBOUNDS: Memory Safety for Shielded Execution.” In: Eu-
roSys. 2017.

[56] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George
Candea, R Sekar, and Dawn Song. “Code-Pointer Integrity.” In:
OSDI. 2014.

[57] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai
Zeng. “Loop-oriented programming: a new code reuse attack to
bypass modern defenses.” In: IEEE Trustcom/BigDataSE/ISPA.
2015.

[58] Michael Larabel. Concurrent TLB Flushing For Linux 5.13 Provide
A Small Performance Benefit. 2021. url: https://www.phoronix.
com/scan.php?page=news_item&px=Linux-5.13-Concurrent-TLB-

Flush.

[59] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray,
and J. H. Hartman. “Protecting Against Unexpected System Calls.”
In: USENIX Security Symposium. 2005.

[60] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[61] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. “Light-Weight
Contexts: An OS Abstraction for Safety and Performance.” In:
OSDI 16. 2016.

[62] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
“Thwarting Memory Disclosure with Efficient Hypervisor-Enforced
Intra-Domain Isolation.” In: CCS. 2015.

[63] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung,
Taesoo Kim, and Wenke Lee. “ASLR-Guard: Stopping Address
Space Leakage for Code Reuse Attacks.” In: CCS. 2015.

https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.13-Concurrent-TLB-Flush
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.13-Concurrent-TLB-Flush
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.13-Concurrent-TLB-Flush

292 Chapter 10. Domain Page-Table Isolation

[64] LWN. The current state of kernel page-table isolation. 2017. url:
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/.

[65] Petr Matousek. CVE-2016-5195 kernel: mm: privilege escalation
via MAP PRIVATE COW breakage. 2016. url: https://bugzilla.
redhat.com/show_bug.cgi?id=1384344#c16.

[66] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell.
“System V Application Binary Interface.” In: AMD64 Architecture
Processor Supplement, Draft v0.99.7 (2014).

[67] Stephen McCamant and Greg Morrisett. “Evaluating SFI for a
CISC Architecture.” In: USENIX Security Symposium. 2006.

[68] Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn. “Mi-
croStache: A Lightweight Execution Context for In-Process Safe
Region Isolation.” In: RAID. 2018.

[69] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX.” In: S&P. 2020.

[70] Nergal. The advanced return-into-lib(c) explits: PaX case study.
2001.

[71] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo
Kim. “libmpk: Software Abstraction for Intel Memory Protection
Keys (Intel MPK).” In: USENIX ATC. 2019.

[72] David S. Peterson, Matt Bishop, and Raju Pandey. “A Flexi-
ble Containment Mechanism for Executing Untrusted Code.” In:
USENIX Security Symposium. 2002.

[73] Vassilis Prevelakis and Diomidis Spinellis. “Sandboxing Applica-
tions.” In: USENIX ATC. 2001.

[74] Niels Provos. “Improving Host Security with System Call Policies.”
In: USENIX Security Symposium. 2003.

[75] Raul Quinonez. SGXBENCH framework for benchmarking SGX
enclaves. 2018. url: https://github.com/isolation:sgxbench/

isolation:sgxbench.

[76] Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Iso-
lation: Process Separation for Web Sites within the Browser.” In:
USENIX Security Symposium. 2019.

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16
https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16
https://github.com/isolation:sgxbench/isolation:sgxbench
https://github.com/isolation:sgxbench/isolation:sgxbench

References 293

[77] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose,
Kevin Z. Snow, and Michalis Polychronakis. “Revisiting Browser
Security in the Modern Era: New Data-Only Attacks and Defenses.”
In: EuroS&P. 2017.

[78] Mickaël Salaün. Landlock: unprivileged access control. 2016.

[79] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin
Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel Gruss.
“Donky: Domain Keys–Efficient In-Process Isolation for RISC-V
and x86.” In: USENIX Security Symposium. 2020.

[80] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: S&P. 2015.

[81] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs.” In: arXiv:1905.05725 (2019).

[82] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features.” In: AsiaCCS. 2018.

[83] Michael Schwarz, Moritz Lipp, and Claudio Canella.
misc0110/PTEditor: A small library to modify all page-table levels
of all processes from user space for x86 64 and ARMv8. 2018. url:
https://github.com/misc0110/PTEditor.

[84] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical
Enclave Malware with Intel SGX.” In: DIMVA. 2019.

[85] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. “SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs.” In:
NDSS. 2017.

[86] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

[87] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi.
“Secure In-VM Monitoring Using Hardware Virtualization.” In:
CCS. 2009.

https://github.com/misc0110/PTEditor

294 Chapter 10. Domain Page-Table Isolation

[88] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu,
and Josep Torrellas. “Draco: Architectural and Operating System
Support for System Call Security.” In: MICRO. 2020.

[89] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[90] Tizen. Security:Seccomp. 2018. url: https://wiki.tizen.org/

Security:Seccomp.

[91] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte,
Michael Sammler, Peter Druschel, and Deepak Garg. “ERIM: Se-
cure and Efficient In-process Isolation with Memory Protection
Keys.” In: USENIX Security Symposium. 2019.

[92] Jo Van Bulck et al. “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection.” In: S&P. 2020.

[93] David A. Wagner. Janus: An Approach for Confinement of Un-
trusted Applications. Tech. rep. University of California at Berkeley,
1999.

[94] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L
Graham. “Efficient software-based fault isolation.” In: ACM SOSP.
1993.

[95] Pengfei Wang and Jens Krinke. “How Double-Fetch Situations turn
into Double-Fetch Vulnerabilities: A Study of Double Fetches in
the Linux Kernel.” In: USENIX Security Symposium. 2017.

[96] Robert N. M. Watson. “Exploiting Concurrency Vulnerabilities in
System Call Wrappers.” In: WOOT. 2007.

[97] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
“SGXJail: Defeating Enclave Malware via Confinement.” In: RAID.
2019.

[98] Mozilla Wiki. Project Fission. 2019. url: https://wiki.mozilla.
org/Project_Fission.

[99] Mozilla Wiki. Security/Sandbox. 2019. url: https://wiki.mozilla.
org/Security/Sandbox.

[100] SELinux Wiki. FAQ — SELinux Wiki. 2009. url: http : / /

selinuxproject.org/w/?title=FAQ&oldid=729.

[101] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. “MPTEE: Bring-
ing Flexible and Efficient Memory Protection to Intel SGX.” In:
EuroSys. 2020.

https://wiki.tizen.org/Security:Seccomp
https://wiki.tizen.org/Security:Seccomp
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
http://selinuxproject.org/w/?title=FAQ&oldid=729
http://selinuxproject.org/w/?title=FAQ&oldid=729

11
SFIP: Coarse-Grained

Syscall-Flow-Integrity Protection in
Modern Systems

Publication Data

Claudio Canella, Sebastian Dorn, Daniel Gruss, and Michael Schwarz.
“SFIP: Coarse-Grained Syscall-Flow-Integrity Protection in Modern Sys-
tems.” In: arXiv:2202.13716 (2022)

Contributions

Main author.

295

296 Chapter 11. Syscall-Flow-Integrity Protection

SFIP: Coarse-Grained Syscall-Flow-Integrity
Protection in Modern Systems

Claudio Canella
1
, Sebastian Dorn

1

Daniel Gruss
1
, Michael Schwarz

2

1
Graz University of Technology, Austria

2
CISPA Helmholtz Center for

Information Security, Germany

Abstract

Control-Flow Integrity (CFI) is one promising mitigation that is more
and more widely deployed and prevents numerous exploits. However, CFI
focuses purely on one security domain, and transitions between user space
and kernel space are not protected. Furthermore, if user-space CFI is
bypassed, the system and kernel interfaces remain unprotected, and an
attacker can run arbitrary transitions.

In this paper, we introduce the concept of syscall-flow-integrity pro-
tection (SFIP) that complements the concept of CFI with integrity for
user-kernel transitions. Our proof-of-concept implementation relies on
static analysis during compilation to automatically extract possible syscall
transitions. An application can opt-in to SFIP by providing the extracted
information to the kernel for runtime enforcement. The concept is built
on three fully-automated pillars: First, a syscall state machine, represent-
ing possible transitions according to a syscall digraph model. Second,
a syscall-origin mapping, which maps syscalls to the locations at which
they can occur. Third, an efficient enforcement of syscall-flow integrity in
a modified Linux kernel. In our evaluation, we show that SFIP can be
applied to large scale applications with minimal slowdowns. In a micro-
and a macrobenchmark, it only introduces an overhead of 13.1 % and
7.4 %, respectively. In terms of security, we discuss and demonstrate
its effectiveness in preventing control-flow-hijacking attacks in real-world
applications. Finally, to highlight the reduction in attack surface, we
perform an analysis of the state machines and syscall-origin mappings of
several real-world applications. On average, SFIP decreases the number
of possible transitions by 41.5 % compared to seccomp and 91.3 % when
no protection is applied.

1. Introduction 297

1 Introduction

Vulnerablities in applications can be exploited by an attacker to gain
arbitrary code execution within the application [63]. Subsequently, the
attacker can exploit further vulnerabilities in the underlying system to
elevate privileges [35]. Such attacks can be mitigated in either of these
two stages: the stage where the attacker takes over control of a victim
application [12, 63], or the stage where the attacker exploits a bug in the
system to elevate privileges [34, 36]. Researchers and industry have focused
on eliminating the first stage, where an attacker takes over control of a
victim application, by reducing the density of vulnerabilities in software,
e.g., by enforcing memory safety [12, 63]. The second line of defense,
protecting the system, has also been studied extensively [20, 34, 36, 61].
For instance, sandboxing is a technique that tries to limit the available
resources of an application, reducing the remaining attack surface. Ideally,
an application only has the bare minimum of resources, e.g., syscalls, that
are required to work correctly.

Control-flow integrity [1] (CFI) is a mitigation that limits control-flow
transfers within an application to a set of pre-determined locations. While
CFI has demonstrated that it can prevent attacks, it is not infallible [27].
Once it has been circumvented, the underlying system and its interfaces
are once again exposed to an attacker as CFI does not apply protection
across security domains.

In the early 2000s, Wagner and Dean [65] proposed an automatic, static
analysis approach that generates syscall digraphs, i.e., a
k-sequence [17] of consecutive syscalls of length 2. A runtime moni-
tor validates whether a transition is possible from the previous syscall to
the current one and raises an alarm if it is not. The Secure Computing
interface of Linux [15], seccomp, simplifies the concept by only validating
whether a syscall is allowed, but not whether it is allowed in the context of
the previous one. Recent work has explored hardware support for Linux
seccomp to improve its performance [60]. In contrast to the work by
Wagner and Dean [65] and other intrusion detection systems [19, 23, 29,
31, 42, 45, 64, 68, 69], seccomp acts as an enforcement tool instead of a
simple monitoring system. Hence, false positives are not acceptable as
they would terminate a benign application. Thus, we ask the following
questions in this paper:

Can the concept of CFI be applied to the user-kernel boundary? Can
prior syscall-transition-based intrusion detection models, e.g., digraph

298 Chapter 11. Syscall-Flow-Integrity Protection

models [65], be transformed into an enforcement mechanism without
breaking modern applications?

In this paper, we answer both questions in the affirmative. We in-
troduce the concept of syscall-flow-integrity protection (SFIP), comple-
menting the concept of CFI with integrity for user-kernel transitions. Our
proof-of-concept implementation relies on static analysis during compila-
tion to automatically extract possible syscall transitions. An application
can opt-in to SFIP by providing the extracted information to the kernel
for runtime enforcement. SFIP builds on three fully-automated pillars,
a syscall state machine, a syscall-origin mapping, and an efficient SFIP
enforcement in the kernel.

The syscall state machine represents possible transitions according
to a syscall digraph model. In contrast to Wagner and Dean’s [65] runtime
monitor, we rely on an efficient state machine expressed as an N × N
matrix (N is the number of provided syscalls), that scales even to large
and complex applications. We provide a compiler-based proof-of-concept
implementation, called SysFlow

1
, that generates such a state machine

instead of individual sets of k-sequences. For every available syscall, the
state machine indicates to which other syscalls a transition is possible. Our
syscall state machine (i.e., the modified digraph) has several advantages
including faster lookups (O(1) instead of O(M) with M being the number
of possible k-sequences), easier construction, and less and constant memory
overhead.

The syscall-origin mapping maps syscalls to the locations at which
they can occur. Syscall instructions in a program may be used to perform
different syscalls, i.e., a bijective mapping between code location and
syscall number is not guaranteed. We resolve the challenge of these non-
bijective mappings with a mechanism propagating syscall information
from the compiler frontend and backend to the linker, enabling the precise
enforcement of syscalls and their origin. During the state transition
check, we additionally check whether the current syscall originates from a
location at which it is allowed to occur. For this purpose, we extend our
syscall state machine with a syscall-origin mapping that can be bijective
or non-bijective, which we extract from the program. Consequently, our
approach eliminates syscall-based shellcode attacks and imposes additional
constraints on the construction of ROP chains.

The efficient enforcement of syscall-flow integrity is implemented
in the Linux kernel. Instead of detection, i.e., logging the intrusion and
notifying a user as is the common task for intrusion detection systems [37],

1
https://github.com/SFIP/SFIP

https://github.com/SFIP/SFIP

1. Introduction 299

we focus on enforcement. Our proof-of-concept implementation places
the syscall state machine and non-bijective syscall-origin mapping inside
the Linux kernel. This puts our enforcement on the same level as sec-
comp, which is also used to enforce the correct behavior of an application.
However, detecting the set of allowed syscalls for seccomp is easier. As
such, our enforcement is an additional technique to sandbox an applica-
tion, automatically limiting the post-exploitation impact of attacks. We
refer to our enforcement as coarse-grained syscall-flow-integrity protection,
effectively emulating the concept of control-flow integrity on the syscall
level.

We evaluate the performance of SFIP based on our reference imple-
mentation. In a microbenchmark, we only observe an overhead on the
syscall execution of up to 13.1 %, outperforming seccomp-based protec-
tions. In real-world applications, we observe an average overhead of 7.4 %.
In long-running applications, such as ffmpeg, nginx, and memcached, this
overhead is even more negligible, with less than 1.8 % compared to an
unprotected version. We evaluate the one-time overhead of extracting the
information from a set of real-world applications. In the worst case, we
observe an increase in compilation time by factor 28.

We evaluate the security of the concept of syscall-flow-integrity pro-
tection in a security analysis with special focus on control-flow hijacking
attacks. We evaluate our approach on real-world applications in terms
of number of states (i.e., syscalls with at least one outgoing transition),
number of average transitions per state, and other security-relevant met-
rics. Based on this analysis, SFIP, on average, decreases the number of
possible transitions by 41.5 % compared to seccomp and 91.3 % when no
protection is applied. Against control-flow hijacking attacks, we find that
in nginx, a specific syscall can, on average, only be performed at the
location of 3 syscall instructions instead of in 318 locations. We conclude
that syscall-flow integrity increases system security substantially while
only introducing acceptable overheads.

To summarize, we make the following contributions:

1. We introduce the concept of (coarse-grained) syscall-flow-integrity
protection (SFIP) to enforce legitimate user-to-kernel transitions
based on static analysis of applications.

2. Our proof-of-concept SFIP implementation is based on a syscall
state machine and a mechanism to validate a syscall’s origin.

3. We evaluate the security of SFIP quantitatively, showing that the
number of possible syscall transitions is reduced by 91.3 % on average

300 Chapter 11. Syscall-Flow-Integrity Protection

in a set of 8 real-world applications, and qualitatively by analyzing
the implications of SFIP on a real-world exploit.

4. We evaluate the performance of our SFIP proof-of-concept imple-
mentation, showing an overhead of 13.1 % in a microbenchmark and
7.4 % in a macrobenchmark.

2 Background

2.1 Sandboxing

Sandboxing is a technique to constrain the resources of an application to
the absolute minimum necessary for an application to still work correctly.
For instance, a sandbox might limit an application’s access to files, network,
or syscalls it can perform. A sandbox is often a last line of defense in
an already exploited application, trying to limit the post-exploitation
impact. Sandboxes are widely deployed in various applications, including
in mobile operating systems [3, 32] and browsers [53, 70, 71]. Linux
also provides various methods for sandboxing, including SELinux [72],
state:AppArmor [62], or seccomp [15].

2.2 Digraph Model

The behavior of an application can be modeled by the sequence of syscalls
it performs. In intrusion detection systems, windows of consecutive
syscalls, so-called k-sequences, have been used [17]. k-sequences of length
k = 2 are commonly referred to as digraphs [65]. A model built upon
these digraphs allows easier construction and more efficient checking while
reducing the accuracy in the detection [65] as only previous and current
syscall are considered.

2.3 Linux Seccomp

The syscall interface is a security-critical interface that the Linux kernel
exposes to userspace applications. Applications rely on syscalls to request
the execution of privileged tasks from the kernel. Hence, securing this
interface is crucial to improving the system’s overall security.

To better secure this interface, the kernel provides Linux Secure Com-
puting (seccomp). A benign application first creates a filter that contains
all the syscalls it intends to perform over its lifetime and then passes this
filter to the kernel. Upon a syscall, the kernel checks whether the executed
syscall is part of the set of syscalls defined in the filter and either allows

2. Background 301

or denies it. As such, seccomp can be seen as a k-sequence of length 1. In
addition to the syscall itself, seccomp can filter static syscall arguments.
Hence, seccomp is an essential technique to limit the post-exploitation
impact of an exploit, as unrestricted access to the syscall interface allows
an attacker to arbitrarily read, write, and execute files. An even worse
case is when the syscall interface itself is exploitable, as this can lead to
privilege escalation [34–36].

2.4 Runtime Attacks

One of the root causes for successful exploits are memory safety violations.
One typical variant of such a violation are buffer overflows, enabling an at-
tacker to modify the application in a malicious way [63]. An attacker tries
to use such a buffer overflow to overwrite a code pointer, such that the con-
trol flow can be diverted to an attacker-chosen location, e.g., to previously
injected shellcode. Attacks relying on shellcode have become harder to
execute on modern systems due to data normally not being executable [47,
63]. Therefore, attacks have to rely on already present, executable code
parts, so-called gadgets. These gadgets are chained together to perform
an arbitrary attacker-chosen task [49]. Shacham further generalized this
attack technique as return-oriented programming (ROP) [59]. Similar to
control-flow-hijacking attacks that overwrite pointers [10, 27, 41, 56, 59],
memory safety violations can also be abused in data-only attacks [33, 54].

2.5 Control-Flow Integrity

Control-flow integrity [1] (CFI) is a concept that restricts an application’s
control flow to valid execution traces, i.e., it restricts the targets of control-
flow transfer instructions. This is enforced at runtime by comparing
the current state of the application to a set of pre-computed states.
Control-flow transfers can be divided into forward-edge and backward-
edge transfers [6]. Forward-edge transfers transfer control flow to a new
destination, such as the target of an (indirect) jump or call. Backward-edge
transfers transfer the control flow back to a location that was previously
used in a forward edge, e.g., a return from a call. Furthermore, CFI can
be subdivided into coarse-grained and fine-grained CFI. In contrast to
fine-grained CFI, coarse-grained CFI allows for a more relaxed control-flow
graph, allowing more targets than necessary [13].

302 Chapter 11. Syscall-Flow-Integrity Protection

Source Code

L01 : void f oo (int b i t) {
L02 : s y s c a l l (open , . . .) ;
L03 : i f (b i t)
L04 : s y s c a l l (read , . . .) ;
L05 : else
L06 : s y s c a l l (write , . . .) ;
L07 : s y s c a l l (c l o s e , . . .) ;
L08 : }

Pillar I: State Transitions

” Trans i t i on s ” : {
”open” : [read , wr i t e] ,
” read” : [c l o s e] ,
” wr i t e ” : [c l o s e]

}

Pillar II: Origins

”Or ig in s ” : {
”open” : [L02] ,
” read” : [L04] ,
” wr i t e ” : [L06] ,
” c l o s e ” : [L07]

}

Pillar III: Kernel Enforcement

i f (! t r a n s i t i o n p o s s i b l e () | | ! v a l i d o r i g i n ())
terminate app () ;

else
// execu te s y s c a l l

extract

install

1

Figure 11.1: The three pillars of SFIP on the example of a function. The first
pillar models possible syscall transitions, the second maps syscalls
to their origin, and the third enforces them.

3 Design of Syscall-Flow-Integrity Protection

3.1 Threat Model

SFIP is applied to a benign userspace application that potentially contains
a vulnerability allowing an attacker to execute arbitrary code within the
application. The post-exploitation targets the operating system through
the syscall interface to gain kernel privileges. With SFIP, a syscall is only
allowed if the state machine contains a valid transition from the previous
syscall to the current one and if it originates from a pre-determined
location. If either one is violated, the application is terminated by the
kernel. Similar to prior work [8, 14, 21, 22], our protection is orthogonal but
fully compatible with defenses such as CFI, ASLR, NX, or canary-based
protections. Therefore, the security it provides to the system remains
even if these other protections have been circumvented. Side-channel and
fault attacks [38, 39, 44, 55, 57, 73] on the state machine or syscall-origin
mapping are out of scope.

3. Design of Syscall-Flow-Integrity Protection 303

3.2 High-Level Design

In this section, we discuss the high-level design behind SFIP. Our approach
is based on three pillars: a digraph model for syscall sequences, a per-
syscall model of syscall origin, and the strict enforcement of these models
(cf. Figure 11.1).

For our first pillar, we rely on the idea of a digraph model from Wagner
and Dean [65]. For our sycall-flow-integrity protection, we rely on a more
efficient construction and in-memory representation. In contrast to their
approach, we express the set of possible transitions not as individual
k-sequences, but as a global syscall matrix of size N ×N , with N being
the number of available syscalls. We refer to the matrix as our syscall
state machine. With this representation, verifying whether a transition is
possible is a simple lookup in the row indicated by the previous syscall and
the column indicated by the currently executing syscall. Even though the
representation of the sequences differs, the set of valid transitions remains
the same: every transition that is marked as valid in our syscall state
machine must also be a valid transition if expressed in the way discussed
by Wagner and Dean. Our representation has several advantages though,
that we explore in this paper, namely faster lookups (O(1)), less memory
overhead, and easier construction.

Our syscall state machine can already be used for coarse-grained SFIP
to improve the system’s security (cf. Section 5.2). However, the second
pillar, the validation of the origin of a specific syscall, further improves the
provided security guarantees by adding additional, enforceable information.
The basis for this augmentation is the ability to map syscalls to the location
at which they can be invoked, independent of whether it is a bijective or
non-bijective mapping. We refer to the resulting mapping as our syscall-
origin mapping. For instance, our mapping might contain the information
that the syscall instruction located at address 0x7ffff7ecbc10 can only
execute the syscalls write and read. Neither unaligned execution (e.g., in a
ROP chain) nor code inserted at runtime is in our syscall-origin mapping.
Thus, syscalls can only be executed at already existing syscall instructions.

The third pillar is the enforcement of the syscall state machine and
the syscall-origin mapping. Wagner and Dean [65] proposed their runtime
monitoring as a concept for intrusion detection systems. There is still a
domain expert involved to decide on any further action [37]. In contrast to
monitoring, enforcement cannot afford false positives as this immediately
leads to the termination of the application in benign scenarios. However,
enforcement provides better security than monitoring as immediate action
is undertaken, completely eliminating the time window for a possible

304 Chapter 11. Syscall-Flow-Integrity Protection

1 void foo(int bit , int nr) {

2 syscall(open , ...);

3 if(bit)

4 syscall(read , ...);

5 else

6 syscall(nr , ...);

7 bar (...);

8 syscall(close , ...);

9 }

Listing 3.1: Example of a dummy program with multiple syscall-flow paths.

exploit. Thus, by the use case of SFIP, namely enforcement of syscall-flow
integrity, our concept is more closely related to seccomp but harder to
realize than seccomp-based enforcement of syscalls.

3.3 Challenges

Previous automation work for seccomp filters outlined several challenges
for automatically detecting an application’s syscalls [8]. While several
works [8, 14, 21] solve these challenges, none provides the full information
required for SFIP. The challenges of getting this missing information focus
on precise syscall information and inter- and intra-procedural control-flow
transfer information. We illustrate the challenges using a simple dummy
program in Listing 3.1.

C1: Precise Per-Function Syscall Information The first challenge
focuses on precise per-function syscall information. This challenge must be
solved for the generation of the syscall state machine as well as the sycall-
origin map. For seccomp-based approaches, i.e., k-sequence of length 1,
an automatic approach only needs to identify the set of syscalls within a
function, i.e., the exact location of the syscalls is irrelevant. This does
not hold for SFIP, which requires precise information at which location a
specific syscall is executed. Thus, we have to detect that the first syscall
instruction always executes the open syscall, the second executes read,
and the third syscall instruction can execute any syscall that can be
specified via nr. For the state machine generation, the precise information
of syscall locations provides parts of the information required to correctly
generate the sequence of syscalls. For the syscall-origin map, the precise
information allows generating the mapping of syscall instructions to actual

3. Design of Syscall-Flow-Integrity Protection 305

syscalls in the case where syscall numbers are specified as a constant at
the time of invocation.

C2: Argument-based Syscall Invocations The second challenge
extends upon C1 as it concerns syscall locations where the actual syscall
executed cannot be easily determined at the time of compilation. When
parsing the function foo, we can identify the syscall number for all
invocations of the syscall function where the number is specified as a
constant. The exception is the third invocation, as the number is provided
by the caller of the foo function. As the call to the function, and hence
the actual syscall number, is in a different translation unit than the actual
syscall invocation, the possibility for a non-bijective mapping exists. Still,
an automated approach must determine all possible syscalls that can be
invoked at each syscall instruction.

C3: Correct Inter- and Intra-Procedural Control-Flow Graph
Precise per-function syscall information on its own is not sufficient to
generate syscall state machines due to the non-linearity of typical code.
Solving C1 and C2 provides the information which syscalls occur at which
syscall location, but does not provide the information on the execution
order. A trivial construction algorithm can assume that each syscall within
a function can follow each other syscall, but this overapproximation leads
to imprecise state machines. Such an approach accepts a transition from
read to the syscall identified by nr as valid, even though it cannot occur
within our example function.

Therefore, we need to determine the correct inter- and intra-
procedural control-flow transfers in an application. The correct intra-
procedural control-flow graph allows determining the possible sequences
within a function. In our example, and if function bar does not contain
any syscalls, it provides the information that the sequence of syscalls open
→ read → close is valid, while open → nr → close (where nr ≠ read) is
not.

Even in the presence of a correct intra-procedural control-flow graph,
we cannot reconstruct the syscall state machine of an application as infor-
mation is missing on the sequence of syscalls from other called functions.
For instance, if function bar contains at least one syscall, the sequence of
open → read → close is no longer valid. Hence, we additionally need to
recover the precise location where control flow is transferred to another
function and the target of this control-flow transfer. By combining the

306 Chapter 11. Syscall-Flow-Integrity Protection

inter- and intra-procedural control-flow graph, the correct syscall sequences
of an application can be modeled.

Constructing a precise control-flow graph is known to be a challenging
task to solve efficiently [2, 28], especially in the presence of indirect
control-flow transfers. These algorithms are often cubic in the size of the
application, which makes them infeasible for large-scale applications. In
the construction of the control-flow graph and, by extension, the generation
of the syscall state machine and syscall-origin mapping, other factors, such
as aliased and referenced functions, must be considered as well as functions
that are passed as arguments to other functions, e.g., the entry function
for a new thread created with pthread create. Any form of imprecision
can lead to the termination of the application by the runtime enforcement.

4 Implementation

In this section, we discuss our proof-of-concept implementation SysFlow
and how we systematically solve the challenges outlined in Section 3.3 to
provide fully-automated SFIP.

SysFlow SysFlow automatically generates the state machine and the
syscall-origin mapping while compiling an application. As the basis of
SysFlow we considered the works by Ghavamnia et al. [21] and Canella
et al. [8].

4.1 State-Machine Extraction

In SysFlow, the linker is responsible for creating the final state machine.
The construction works as follows: The linker starts at the main function,
i.e., the user-defined entry point of an application, and recursively follows
the ordered set of control-flow transfers. Upon encountering a syscall
location, the linker adds a transition from the previous syscall(s) to the
newly encountered syscall. If control flow continues at a different function,
the set of last valid syscall states is passed to the recursive visit of the
encountered function. Upon returning from a recursive visit, the linker
updates the set of last valid syscall states and continues processing the
function. During the recursive processing, it also considers aliased and
referenced functions. A special case, and source of overapproximation, are
indirect calls, which we address with appropriate techniques from previous
works [8, 14, 22]. The resulting syscall state machine and our support

4. Implementation 307

Source Code

L01 : void f oo (int t e s t) {
L02 : s can f (. . .) ;
L03 : i f (t e s t)
L04 : p r i n t f (. . .)
L05 : else
L06 : s y s c a l l (read , . . .) ;
L07 : int r e t = bar (. . .) ;
L08 : i f (! r e t)
L09 : e x i t (0) ;
L10 : return r e t ;
L11 : }

Extracted Function Info

{
” Trans i t i on s ” : {

”L03” : [L04 , L06] ,
”L04” : [L07] ,
”L06” : [L07]
”L08” : [L09 , L10]

}
”Cal l Targets ” : {

”L02” : [” s can f ”] ,
”L04” : [” p r i n t f ”] ,
”L07” : [”bar”] ,
”L09” : [” e x i t ”] ,

}
” Sy s c a l l s ” : {

”L06” : [read]
}

}

extract

1

Figure 11.2: A simplified example of the information that is extracted from
a function. Transitions identifies control-flow transfers between
basic blocks, Call Targets the location of a call to another function
and the targets name, Syscalls the location of the syscall and the
corresponding syscall number.

libarary are embedded in the static binary. We discuss the support library
in more detail in Section 4.3.

Building the state machine requires that precise information of the
syscalls a function executes (C1) and a control-flow graph of the application
(C3) is available to the linker. Both the front- and backend are involved
in collecting this information. The frontend extracts the information from
the LLVM IR generated from C source code, while the backend extracts
the information from assembly files. Figure 11.2 illustrates the information
that is extracted from a function.

Extracting Precise Syscall Information In the frontend, we iterate
over every IR instruction of a function and determine the used syscalls.
In the backend, we iterate over every assembly instruction to extract the
syscalls. Extracting the information in the front- and backend successfully
solves C1.

Extracting Precise Control-Flow Information Recovering the
control-flow graph (C3) in the frontend requires two different sources
of information: IR call instructions and successors of basic blocks. The for-
mer allows tracking inter-procedural control-flow transfers while the latter
allows tracking intra-procedural transfers. For inter-procedural transfers,

308 Chapter 11. Syscall-Flow-Integrity Protection

we iterate over every IR instruction and determine whether it is a call to
an external function. For direct calls, we store the target of the call; for
indirect calls, we store the function signature of the target function. In
addition, we also gather information on referenced and aliased functions,
as well as functions that are passed as arguments to other functions. For
the intra-procedural transfers, we track the successors of each basic block.
In the backend, we perform similar steps, although on a platform-specific
assembly level. Extracting this information in the front- and backend
successfully solves C3.

4.2 Syscall-Origin Extraction

In SysFlow, the linker also generates the final syscall-origin mapping. The
mapping maps all reachable syscalls to the locations where they can occur.
We extract the information as an offset instead of an absolute position to
facilitate compatibility with ASLR. The linker requires precise information
of syscalls, i.e., their offset relative to the start of the encapsulating
function, and a precise call graph of the application. Both the front-
and backend are responsible for providing this information. Figure 11.3
illustrates the extraction. From the frontend, the syscall information
generated by the state machine extraction is re-used (C1). A challenge is
the possibility of non-bijective syscall mappings (C2).

Non-Bijective Syscall Mappings If the syscall number cannot be
determined at the location of a syscall instruction, a non-bijective mapping
exists for the instruction, i.e., multiple syscalls can be executed through
it. An example of such a case is shown in Listing 3.1. In such cases,
the backend itself cannot create a mapping of a syscall to the syscall
instruction. Hence, it must propagate the syscall number and the syscall
offset from their respective translation unit to the linker, which can then
merge it, solving C2.

4.3 Installation

For each syscall, the binary contains a list of all other reachable syscalls
as an N ×N matrix, i.e., the state machine, with N being the number
of syscalls available. Valid transitions are indicated by a 1 in the matrix,
invalid ones with a 0 to allow fast checks and constant memory overhead.
If a function contains a syscall, the offset of the syscall is added to the
load address of the function. The state machine and the syscall-origin
mapping are sent to the kernel and installed.

4. Implementation 309

Translation Unit 1

L01 : void func () {
.func:39:

L02 : asm(” s y s c a l l ” : : ”a” (3 9)) ;
. . .
.syscall cp:3:

L08 : s y s c a l l c p (c l o s e , 0) ;
L09 : }

Translation Unit 2

L01 : s y s c a l l c p :
. . .

L06 : mov %rcx ,% r s i
L07 : mov 8(%rsp) ,% r8

.syscall cp:-1:
L08 : s y s c a l l

. . .

Extraction TU 1

” O f f s e t s ” : {
” func ” : {

”39” : [L02]
}

}
”Unknown O f f s e t s ” : {

” s y s c a l l c p ” : [3]
}

Extraction TU 2

”Unknown Sy s c a l l s ” : {
” s y s c a l l c p ” : [L08]

}

Linker

” O f f s e t s ” : {
” func ” : {

”39” : [L02]
} ,
” s y s c a l l c p ” : {

”3” : [L08]
}

}

extract

merge

1

Figure 11.3: A simplified example of the syscall-origin extraction. Inserted
red labels mark the location of a syscall and encode available
information. The extraction deconstructs the label and calculates
the offset using the label’s address from the symbol table. The
linker combines the information from each translation unit and
generates the final syscall-origin mapping.

4.4 Kernel Enforcement

In this section, we discuss the third and final pillar of SFIP: enforcement
of the syscall flow and origin where every violation leads to immediate
process termination. Our Linux kernel is based on version 5.13 configured
for Ubuntu 21.04 with the following modifications.

First, a new syscall, SYS syscall sequence, which takes as arguments
the state machine, the syscall-origin mapping, and a flag that identifies
the requested mode, i.e., is state-machine enforcement requested, syscall-
origin enforcement, or both. The kernel rejects updates to already installed
syscall-flow information. Consequently, an unprivileged process cannot
apply a malicious state machine or syscall origins before invoking a setuid
binary or other privileged programs using the exec syscall [16].

Second, our syscall-flow-integrity checks are executed before every
syscall. We create a new syscall work bit entry, which determines whether
or not the kernel uses the slow syscall entry path, like in seccomp, to ensure
that our checks are executed. Upon installation, we set the respective bit
in the syscall work flag in the thread info struct of the requesting task.

310 Chapter 11. Syscall-Flow-Integrity Protection

Third, the syscall-flow information has to be stored and cleaned up
properly. As it is never modified after installation, it can be shared
between the parent and child processes and threads. Upon task cleanup,
we decrease the reference counter, and if it reaches 0, we free the respective
memory. The current state, i.e., the previously executed syscall, is not
shared between threads or processes and is thus part of every thread.

Enforcing State Machine Transitions Each thread and process
tracks its own current state in the state machine. As we enforce sequence
lengths of size 2, storing the previously executed syscall as the current
state is sufficient for the enforcement. Due to the design of our state
machine, verifying whether a syscall is allowed is a single lookup in the
matrix at the location indicated by the previous and current syscall. If
the entry indicates a valid transition, we update our current state to
the currently executing syscall and continue with the syscall execution.
Otherwise, the kernel immediately terminates the offending application.
The simple state machine lookup, with a complexity of O(1), ensures that
only a small overhead is introduced to the syscall (cf. Section 5.1).

Enforcing Syscall Origins The enforcement of the syscall origins is
very efficient due to its design. Our modified kernel uses the current syscall
to retrieve the set of possible locations from the mapping to check whether
the current RIP, minus the size of the syscall instruction itself, is a part
of the retrieved set. If not, the application requested the syscall from an
unknown location, which results in the kernel immediately terminating
it. By design, the complexity of this lookup is O(N), with N being the
number of valid offsets for that syscall. We evaluate typical values of N
in Section 5.2.

5 Evaluation

In this section, we evaluate the general idea of SFIP and our proof-of-
concept implementation SysFlow. In the evaluation, we focus on the
performance and security of the syscall state machines and syscall-origins
individually and combined. We evaluate the overhead introduced on syscall
executions in both a micro- and macrobenchmark. We also evaluate the
time required to extract the required information from a selection of
real-world applications.

Our second focus is the security provided by SFIP. We first consider
the protection SFIP provides against control-flow hijacking attacks. We

5. Evaluation 311

State Origin Combined None Seccomp
0

200

400
32

6
32

9 34
1

30
2 34

8

32
0

32
0 33

2

29
2 33

6
C

y
cl

es

average min

Figure 11.4: Microbenchmark of the getppid syscall over 100 million execu-
tions. We evaluate SFIP with only state machine, only syscall
origin, both, and no enforcement active. For comparison, we also
benchmark the overhead of seccomp.

evaluate the security of pure syscall-flow protection, pure syscall-origin
protection, and combined protection. We discuss mimicry attacks and
how SFIP makes such attacks harder. We also consider the security of
the stored information in the kernel and discuss the possibility of an
attacker manipulating it. Finally, we extract the state machines and
syscall origins from several real-world applications and analyze them. We
evaluate several security-relevant metrics such as the number of states in
the state machine, average possible transitions per state, and the average
number of allowed syscalls per syscall location.

5.1 Performance

Setup

All performance evaluations are performed on an i7-4790K running
Ubuntu 21.04 and our modified Linux 5.13 kernel. For all evaluations, we
ensure a stable frequency.

Microbenchmark

We perform a microbenchmark to determine the overhead our protection
introduces on syscall executions. Our benchmark evaluates the latency of
the getppid syscall, a syscall without side effects that is also used by kernel
developers and previous works [5, 8, 30]. SysFlow first extracts the state
machine and the syscall-origin information from our benchmark program,

312 Chapter 11. Syscall-Flow-Integrity Protection

ffmpeg nginx pwgen coreutils memcached
0

0.5

1

1.5

+
3.

93
%

+
1.

08
%

+
13
.3

3
%

+
6.

5
%

+
0.

5
%

+
2.

98
%

+
1.

2
%

+
13
.3

3
%

+
9.

83
%

+
0.

34
%

+
1.

81
%

+
1.

52
%

+
20

%

+
12
.4

2
%

+
1.

06
%

+
0

%

+
0

%

+
0

%

+
0

%

+
0

%

N
or

m
al

iz
ed

O
ve

rh
ea

d

State Sysloc Combined None

Figure 11.5: We perform a macrobenchmark using 5 real-world applications.
For nginx, we measure the time it takes to handle 100 000 requests
using ab. For ffmpeg, we convert a video (21 MB) from one file
format to another. pwgen generates a set of passwords while
coreutils and memcached are benchmarked using their respective
testsuites. Each benchmark measures the average execution time
over 100 repetitions of each mode of SFIP.

which we then execute once for every mode of SFIP, i.e., state machine,
syscall origins, and combined. Each execution measures the latency of
100 million syscall invocations. For comparison, we also benchmark the
execution with no active protection. As with seccomp, syscalls performed
while our protection is active require the slow syscall enter path to be
taken. As the slow path introduces part of the overhead, we additionally
measure the performance of seccomp in the same experiment setup.

Results Figure 11.4 shows the results of the microbenchmark. Our
results indicate a low overhead for the syscall execution for all SFIP
modes. Transition checks show an overhead of 8.15 %, syscall origin
9.13 %, and combined 13.1 %. Seccomp introduces an overhead of 15.23 %.
The improved seccomp has a complexity of O(1) for simple allow/deny
filters [11], the same as our state machine. The syscall-origin check has
a complexity of O(N), with typically small numbers for N , i.e., N = 1
for the getppid syscall in the microbenchmark. Section 5.2 provides a
more thorough evaluation of N in real-world applications. The additional
overhead in seccomp is due to its filters being written in cBPF and
converted to and executed as eBPF.

5. Evaluation 313

Macrobenchmark

To demonstrate that SFIP can be applied to large-scale, real-world applica-
tions with a minimal performance overhead, we perform a macrobenchmark
using applications used in previous work [8, 21, 60]. We measure the per-
formance over 100 executions with only state machine, only syscall origin,
both, and no enforcement active. For nginx, we measure the time it takes
to process 100 000 requests. For ffmpeg, we convert a video (21 MB) from
one file format to another. With pwgen, we generate a set of passwords
while coreutils and memcached are benchmarked using their respective
testsuites. In all cases, we verified that syscalls are being executed, e.g.,
each request for nginx executes at least 13 syscalls.

Results Figure 11.5 shows the results of the macrobenchmark. In nginx,
we observe a small increase in execution time when any mode of SFIP is
active. If both checks are performed, the average increase from 24.96 s
to 25.34 s (+1.52 %) is negligible. We observe similar overheads in the
ffmpeg benchmark. For the combined checks, we only observe an increase
from 9.41 s to 9.58 s (+1.52 %). pwgen and coreutils show the highest
overhead. pwgen is a small application that performs its task in under a
second; hence any increase appears large. The absolute change in runtime
is an increase of 0.05 s. For the coreutils benchmark, we execute the
testsuite that involves all 103 utilities. Each utility requires that the
SFIP information is copied to the kernel, which introduces a majority of
the overhead. As the long-running applications show, the actual runtime
overhead is less than 1.8 %. Our results demonstrate that SFIP is a feasible
concept for modern, large-scale applications.

Extraction-Time Benchmark

We evaluate the time it takes to extract the information required for the
state machine and syscall origins. As targets, we use several real-world
applications (cf. Table 11.1) used in previous works on automated seccomp
sandboxing [8, 14, 21]. These range from smaller utility applications such
as busybox and coreutils to applications with a larger and more complex
codebase such as ffmpeg, mupdf, and nginx. For the benchmark, we
compile each application 10 times using our modified compiler with and
without our extraction active.

Results Table 11.1 shows the result of the extraction-time benchmark.
We present the average compilation time and the standard error for com-

314 Chapter 11. Syscall-Flow-Integrity Protection

Table 11.1: The results of our extraction time evaluation in real world appli-
cations. We present both the compilation time of the respective
application with and without our extraction active.

Application
Unmodified

Average / SEM
Modified

Average / SEM

ffmpeg 162.12 s / 0.78 1783.15 s / 10.61

mupdf 58.01 s / 0.71 489.85 s / 0.68

nginx 8.22 s / 0.03 226.64 s / 1.67

busybox 16.09 s / 0.08 81.33 s / 0.14

coreutils 5.50 s / 0.02 14.39 s / 0.41

memcached 2.90 s / 0.03 4.59 s / 0.01

pwgen 0.07 s / 0.00 0.12 s / 0.00

piling each application 10 times. The results indicate that the extraction
introduces a significant overhead. For instance, for the coreutils applica-
tions, we observe an increase in compilation time from approximately 6 s
to 15 s. We observe the largest increase in nginx from approximately 8 s
to 227 s. Most of the overhead is in the linker, while the extraction in the
frontend and backend is fast. We expect that a full implementation can
significantly improve upon the extraction time by employing more efficient
caching and by potentially applying other construction algorithms.

Similar to previous work [21], we consider the increase in compilation
time not to be prohibitive as it is a one-time cost. Hence, the security
improvement outweighs the increase in compilation time.

5.2 Security

In this section, we evaluate the security provided by SFIP. We discuss the
theoretical security benefit of each mode of SFIP in the context of control-
flow-hijacking attacks. We then evaluate a real vulnerability in BusyBox
version 1.4.0 and later

1
. We also consider mimicry attacks [65, 66] and

perform an analysis of real-world state machines and syscall origins.

1
https://ssd-disclosure.com/ssd-advisory-busybox-local-cmdline-

stack-buffer-overwrite/

https://ssd-disclosure.com/ssd-advisory-busybox-local-cmdline-stack-buffer-overwrite/
https://ssd-disclosure.com/ssd-advisory-busybox-local-cmdline-stack-buffer-overwrite/

5. Evaluation 315

Syscall-Flow Integrity in the Context of Control-flow Hijacking

In the threat model of SFIP (cf. Section 3.1), an attacker has control
over the program-counter value of an unprivileged application. In such a
situation, an attacker can either inject code, so-called shellcode, that is
then executed, or reuse existing code in a so-called code-reuse attack. In
a shellcode attack, an attacker manages to inject their own custom code.
With control over the program-counter value, an attacker can redirect
the control flow to the injected code. On modern systems, these types of
attacks are by now harder to execute due to data execution prevention [47,
63], i.e., data is no longer executable. As a result, an attacker must
first make the injected code executable, which requires syscalls, e.g., the
mprotect syscall. For this, an attacker has to rely on existing code (gadgets)
in the exploited application to execute such a syscall. An attacker might
be lucky, and the correct parameters are already present in the respective
registers, resulting in a straightforward code-reuse attack commonly known
as ret2libc [49]. Realistically, however, an attacker first has to get the
location and size of the shellcode area into the corresponding registers
using existing code gadgets. Depending on the type of gadgets, such
attacks are known as return-oriented-programming [59] or jump-oriented-
programming attacks [4].

On an unprotected system, every application can execute the mprotect
syscall. Depending on the application, the mprotect syscall cannot be
blocked by seccomp if the respective application requires it. With SFIP,
attacks that rely on mprotect can potentially be prevented even if the
application requires the syscall. First, we consider a system where only
the state machine is verified on every syscall execution. mprotect is mainly
used in the initialization phase of an application [8, 21]. Hence, we expect
very few other syscalls to have a transition to it, if any. This leaves a
tiny window for an attacker to execute the syscall to make the shellcode
executable, i.e., it is unlikely that the attempt succeeds in the presence of
state-machine SFIP. Still, with only state-machine checks, the syscall can
originate from any syscall instruction within the application.

Contrary, if only the syscall origin is enforced, the mprotect syscall is
only allowed at certain syscall instructions. Hence, an attacker needs to
construct a ROP chain that sets up the necessary registers for the syscall
and then returns to such a location. In most cases, the only instance where
mprotect is allowed is within the libc mprotect function. If executed from
there, the syscall succeeds. If the syscall originates from another location,
the check fails, and the application is terminated. Still, with only syscall

316 Chapter 11. Syscall-Flow-Integrity Protection

origins being enforced, the previous syscall is not considered, allowing an
attacker to perform the attack at any point in time.

With both active, i.e., full SFIP, several restrictions are applied to a
potential attack. The attacker must construct a ROP chain that either
starts after a syscall with a valid transition to mprotect was executed,
or the ROP chain must contain a valid sequence of syscalls that lead to
such a state, i.e., a mimicry attack (cf. Section 5.2). Additionally, all
syscalls must originate from a location where they can legally occur. These
additional constraints significantly increase the security of the system.

Real-world Exploit

For a real-world application, we evaluate a stack-based buffer overflow in
the BusyBox arp applet from version 1.4.0 to version 1.23.1. In line with
our threat model, we assume that all software-based security mechanisms,
such as ASLR and stack protector, have already been circumvented. The
vulnerable code is in the arp getdevhw function, which copies a user-
provided command-line parameter to a stack-allocated structure using
strcpy. By providing a device name longer than IFNAMSIZ (default 16
characters), this overflow overwrites the stack content, including the stored
program counter.

The simplest exploit we found is to mount a return2libc attack using
a one gadget RCE, i.e., a gadget that directly spawns a shell. In libc
version 2.23, we discovered such a gadget at offset 0xf0897, with the
only requirement that offset 0x70 on the stack is zero, which is luckily
the case. Hence, by overwriting the stored program counter with that
offset, we can successfully replace the application with an interactive shell.
With SFIP, this exploit is prevented. Running the exploit executes the
socket syscall right before the execve syscall that opens the shell. While
the execve syscall is at the correct location, the state machine does not
allow a transition from the socket to the execve syscall. Hence, exploits
that directly open a shell are prevented. We also verified that there is no
possible transition from socket to mprotect,; hence loaded shellcode cannot
be marked as executable. There are only 21 syscalls after a socket syscall
allowed by the state machine. Especially as neither the mprotect nor the
execve syscall are available, possible exploits are drastically reduced. To
circumvent the protection, an attacker would need to find gadgets allowing
a valid transition chain from the socket to the execve (or mprotect) syscall.
We also note that the buffer overflow itself is also a limiting factor. As
the overflow is caused by a strcpy function, the exploit payload, i.e., the

5. Evaluation 317

ROP chain, cannot contain any null byte. Thus, given that user-space
addresses on 64-bit systems always have the 2 most-significant address
bits set to 0, a longer chain is extremely difficult to craft.

Syscall-Flow-Integrity Protection and Mimicry Attacks

We consider the possibility of mimicry attacks [65, 66] where an attacker
tries to circumvent a detection system by evading the policy. For instance,
if an intrusion detection system is trained to detect a specific sequence
of syscalls as malicious, an attacker can add arbitrary, for the attack
unneeded, syscalls that hide the actual attack. With SFIP, such attacks
become significantly more complicated. An attacker needs to identify the
last executed syscall and knowledge of the valid transitions for all syscalls.
With this knowledge, the attacker needs to perform a sequence of syscalls
that forces the state machine into a state where the malicious syscall is a
valid transition. Additionally, as syscall origins are enforced, the attacker
has to do this in a ROP attack and is limited to syscall locations where
the specific syscalls are valid. While this does not make mimicry attacks
impossible, it adds several constraints that make the attack significantly
harder.

Security of Syscall-Flow Information in the Kernel

The security of the syscall-flow information stored in the kernel is crucial
for effective enforcement. Once the application has sent the information
to the kernel for enforcement, it is the responsibility of the kernel to
prevent malicious changes to the information. The case where the initial
information sent to the kernel is malicious is outside of the threat model
(cf. Section 3.1).

The kernel stores the information in kernel memory; hence direct
access and manipulation is not possible. The only way to modify the
information is through our new syscall. Our implementation currently
does not allow for any changes to the installed information, i.e., no
updates are allowed. An attacker using our syscall and a ROP attack to
manipulate the information is also not possible as the syscall itself needs
to pass SFIP checks before being executed. As the application contains
no valid transition nor location for the syscall, the kernel terminates the
application.

Still, as allowing no updates is a design decision, another implementa-
tion might consider allowing updates. In this case, the application needs
to perform our new syscall to update the filters. Before our syscall is

318 Chapter 11. Syscall-Flow-Integrity Protection

Table 11.2: We evaluate various properties of applications state machines, in-
cluding the average number of transitions per state, number of
states in the state machine, min and max transitions. Busybox and
coreutils show the averages over all contained utilites (398 and 103
utilities, respectively).

Application Average Transitions #States Min Transitions Max Transitions

busybox 15.73 24.51 1.0 21.09

pwgen 12.42 19 1 16

muraster 17.51 41 1 33

nginx 65.55 108 1 80

coreutils 15.75 27.11 1.0 23.0

ffmpeg 48.48 56 1 51

memcached 40.6 87 1 71

mutool 32.0 61 1 46

executed, SFIP is applied to the syscall, i.e., it is verified whether there is
a valid transition to it and whether it originates at the correct location.
If not, the kernel terminates the application; otherwise, the update is
applied. In this case, if timed correctly, an attacker is able to maliciously
modify the stored information.

State Machine Reachability Anaysis

We analyse the state machine of several real-world applications in more
detail. We define a state in our state machine as a syscall with at least one
outgoing transition. While Wagner and Dean [65] only provide information
on the average branching factor, i.e., the number of average transitions per
state, we extend upon this to provide additional insights into automatically
generated syscall state machines. We focus on several key factors: the
overall number of states in the application and the minimum, maximum,
and average number of transitions across these states. These are key
factors that determine the effectiveness of SFIP. We do not consider
additional protection provided by enforcing syscall origins. We again
rely on real-world applications that have been used in previous work [8,
14, 21, 60]. For busybox and coreutils, we do not provide the data for
every utility individually, but instead present the average of all contained
utilities, i.e., 398 and 103, respectively. To determine the improvement in
security, we consider an unprotected version of the respective application,
i.e., every syscall can follow the previously executed syscall. Additionally,
we compare our results to a seccomp-based version.

5. Evaluation 319

Results Table 11.2 shows the results of this evaluation. nginx shows the
highest number of states with 108, followed by memcached, mutool, and
ffmpeg with 87, 61, and 56 states, respectively. coreutils and busybox also
provide multiple functionalities but split across various utilities. Hence,
their number of states is comparatively low.

Interestingly, each application has at least one state with only one
valid transition. We manually verified this transition, and in every case,
it is a transition from the exit group syscall to the exit syscall, which is
indeed the only valid transition for this syscall.

The combination of the average and maximum number of transitions
together with the number of states provides some interesting insight. We
observe that in most cases, the number of average transitions is relatively
close to the maximum number of transitions, while the difference to the
number of states can be larger. This indicates that our state machine
is heavily interconnected. Modern applications delegate many tasks via
syscalls to the kernel, such as allocating memory, sending data over
the network, or writing to a file. As syscalls can fail, they are often
followed by error checking code that performs application-specific error
handling, logs the error, or terminates the application. Hence, a potential
transition to these syscalls is automatically detected, leading to larger
state machines. Another source is locking, as the involved syscalls can be
preceded and followed by a wide variety of other syscalls. Additionally, the
overapproximation of indirect calls also increases the number of transitions.

Even with such interconnected state machines, the security improve-
ment is still large compared to an unprotected version of the application
or even a seccomp-based version. In the case of an unprotected version, all
syscalls are valid successors to a previously executed syscall. An unmodi-
fied Linux kernel 5.13 provides 357 syscalls. Compared to nginx, which
has the highest number of average transitions with 66, this is an increase
of factor 5.4 in terms of available transitions. In our state machine, the
number of states corresponds to the number of syscalls an automated
approach needs to allow for seccomp-based protection. These numbers
also match the numbers provided in previous work on automated seccomp
filter generation. For instance, Canella et al. [8] reported 105 syscalls in
nginx and 63 in ffmpeg. Ghavamnia et al. [21] reported 104 in nginx. Each
such syscall can follow any of the other syscalls that are part of the set.
In the case of nginx, this is around factor 1.6 more than in the average
state when SFIP is applied. Hence, we conclude that even coarse-grained
SFIP can drastically increase the system’s security.

320 Chapter 11. Syscall-Flow-Integrity Protection

T
a
b

le
1
1
.3

:
W

e
evalu

ate
variou

s
m

etrics
for

ou
r

sy
scall

lo
cation

en
forcem

en
t,

in
clu

d
in

g
th

e
total

n
u
m

b
er

of
fu

n
ction

s
con

tain
in

g
sy

sca
lls,

m
in

,
m

a
x

a
n
d

av
era

g
e

n
u
m

b
er

o
f

sy
sca

lls
p

er
fu

n
ctio

n
,

to
ta

l
sy

sca
ll

o
ff

sets
fo

u
n
d
,

av
era

g
e

o
ff

sets
p

er
sy

sca
ll,

a
n

d
th

e
n
u

m
b

er
o
f

sy
sca

lls
in

th
e

u
sed

m
u

sl
sy

sca
ll

w
ra

p
p

er
fu

n
ctio

n
s.

B
u

sy
b

ox
a
n

d
co

reu
tils

sh
ow

th
e

avera
g
es

over
all

con
tain

ed
u

tilites
(398

an
d

103
u

tilities,
resp

ectively
).

A
p

p
lic

a
tio

n
#

F
u

n
c
tio

n
s

M
in

S
y
sc

a
lls

M
a
x

S
y
sc

a
lls

A
v
g
.

S
y
sc

a
lls

p
e
r

F
u

n
c
tio

n
T

o
ta

l
#

O
ff

se
ts

A
v
g

#
O

ff
se

ts
#

sy
sc

a
ll()

#
sy

sc
a
ll

c
p

()
#

sy
sc

a
ll

c
p

a
sm

()

b
u
sy

b
ox

30.57
1.0

9.83
1.48

102.64
3.75

1.71
9.79

0

p
w

g
en

28
1

3
1.25

84
4.42

0
2

0

m
u
ra

ster
5
5

1
12

1.62
193

4.6
0

4
0

n
g
in

x
1
05

1
24

1.53
318

3.0
7

24
0

co
reu

tils
3
6.86

1.0
4.21

1.38
116.71

4.42
1.0

3.41
0

ff
m

p
eg

89
1

13
1.55

279
4.98

0
13

13

m
em

ca
ch

ed
1
01

1
20

1.5
317

3.69
0

20
0

m
u
to

o
l

81
1

14
1.67

278
4.15

6
14

0

6. Discussion 321

Syscall Origins Analysis

We perform a similar analysis for our syscall origins in real-world ap-
plications. We focus on analyzing the number of syscall locations per
application and for each such location, the number of syscalls that can
be executed. Special focus is put on the number of syscalls that can be
invoked through the syscall wrapper functions as they can allow a wide
variety of syscalls. Hence, the fewer syscalls are available through these
functions, the better the security of the system.

Results We show the results of this evaluation in Table 11.3. The
average number of offsets per syscall indicates that many syscalls are
available at multiple locations. This is most likely due to the inlining of
the syscall. This number is largely driven by the futex syscall, as locking
is required in many places of applications. Error handling is a less driving
factor in this case as these are predominantly printed using dedicated,
non-inlined functions.

The last two columns analyze the number of syscalls that can be
invoked by the respective syscall wrapper function and demonstrate a non-
bijective mapping of syscalls to syscall locations. Relatively few syscalls
are available through the syscall() function as it can be more easily
inlined, i.e., it is almost always inlined within libc itself. On the other
hand, syscall cp() cannot be inlined as it is a wrapper around an aliased
function that performs the actual syscall.

Our results also indicate that, on average, every function that contains
a syscall contains more than one syscall. nginx contains the most functions
with a syscall and the highest number of total syscall offsets. Without
syscall-origin enforcement, an attacker can choose from 318 syscall loca-
tions to execute any of the 357 syscalls provided by Linux 5.13 during a
ROP attack. With our enforcement, the number is drastically reduced
as each one of these locations can, on average, perform only 3 syscalls
instead of 357.

6 Discussion

Limitations and Future Work Our proof-of-concept implementation
currently does not handle signals and syscalls invoked in a signal handler.
However, this is not a conceptual limitation. The compiler can identify
all functions that serve as a signal handler and the functions that are
reachable through it. Hence, it can extract a per-signal state machine to

322 Chapter 11. Syscall-Flow-Integrity Protection

which the kernel switches when it sets up the signal stack frame. This
allows for small per-signal state machines, which further improve security.
As this requires significant engineering work, we leave the implementation
and evaluation for future work.

Our state-machine construction leads to coarse-grained state
machines, which can be improved by the fact that we can statically
identify syscall origins. Future work can intertwine this information on a
deeper level with the generated state machine. By doing so, a transition
to another state is then not only dependent on the previous and the
current syscall number but also on the virtual address of the previous and
current syscall instruction. This allows to better represent the syscall-flow
graph of the application without relying on context-sensitivity or call
stack information [26, 58, 65]. As this requires significant changes to the
compiler and the enforcement in the kernel and thorough evaluation, we
leave this for future work.

Recent work has proposed hardware support for seccomp [60]. In
future work, we intend to investigate whether similar approaches are
possible to improve the performance of SFIP.

Related Work In 2001, the seminal work by Wagner and Dean [65] in-
troduced automatically-generated syscall NDFAs, NDPDAs, and digraphs
for sequence checks in intrusion detection systems. SFIP builds upon
digraphs but modifies their construction and representation to increase
performance. We further extend upon their work by additionally verifying
the origin of a syscall. The accuracy and performance of SFIP allows
real-time enforcement in large-scale applications.

Several papers have focused on extracting and modeling an applications
control flow based on the work by Forrest et al. [17]. Frequently, such
approaches rely on dynamic analysis [19, 23, 29, 31, 42, 45, 64, 68, 69].
Other approaches rely on machine-learning techniques to learn syscall
sequences or detect intrusions [7, 24, 46, 51, 67, 74]. Giffin et al. [25]
proposed incorporating environment information in the static analysis
to generate more precise models. The Dyck model [26] is a prominent
approach for learning syscall sequences that rely on stack information
and context-sensitive models. Other works disregard control flow and
focus instead on detecting intrusions based on syscall arguments [40, 48].
Forrest et al. [18] provide an analysis on the evolution of system-call
monitoring. Our work differs as we do not require stack information,
context-sensitive models, dynamic tracing of an application, or code

7. Conclusion 323

instrumentation. The only additional information we consider is the
mapping of syscalls to syscall instructions.

Recent work has investigated the possibility of automatically generating
seccomp filters from source or existing binaries [8, 14, 21, 22, 50]. SysFlow
can be extended to generate the required information from binaries as
well. More recent work proposed a faster alternative to seccomp while
also enabling complex argument checks [9]. In contrast to these works, we
consider syscall sequences and origins, which requires additional challenges
to be solved (cf. Section 3.3).

A similar approach to our syscall-origin enforcement has been proposed
by Linn et al. [43] and de Raadt [52]. The former extracts the syscall
locations and numbers from a binary and enforces them on the kernel
level but fails in the presence of ASLR. The latter restricts the execution
of syscalls to entire regions, but not precise locations, i.e., the entire text
segment of a static binary is a valid origin. Additionally, in the entire
region, any syscall is valid at any syscall location. Our work improves
upon them in several ways as we (1) present a way to enforce syscall
origins in the presence of ASLR, (2) limit the execution of specific syscalls
to precise locations, (3) combine syscall origins with state machines which
lead to a significant increase in security.

7 Conclusion

In this paper, we introduced the concept of syscall-flow-integrity protection
(SFIP), complementing the concept of CFI with integrity for user-kernel
transitions. In our evaluation, we showed that SFIP can be applied
to large-scale applications with minimal slowdowns. In a micro- and
a macrobenchmark, we observed an overhead of only 13.1 % and 7.4 %,
respectively. In terms of security, we discussed and demonstrated its
effectiveness in preventing control-flow-hijacking attacks in real-world
applications. Finally, to highlight the reduction in attack surface, we
performed an analysis of the state machines and syscall-origin mappings of
several real-world applications. On average, we showed that SFIP decreases
the number of possible transitions by 41.5 % compared to seccomp and
91.3 % when no protection is applied.

Acknowledgments

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation

324 Chapter 11. Syscall-Flow-Integrity Protection

program (grant agreement No 681402). Additional funding was provided
by generous gifts from ARM and from Amazon. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding parties.

References 325

References

[1] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti.
“Control-Flow Integrity.” In: CCS. 2005.

[2] Lars Ole Andersen. “Program Analysis and Specialization for the
C Programming Language.” PhD thesis. University of Copenhagen,
1994.

[3] Android. Application Sandbox. 2021. url: https://source.android.
com/security/app-sandbox.

[4] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai
Liang. “Jump-oriented programming: a new class of code-reuse
attack.” In: AsiaCCS. 2011.

[5] Davidlohr Bueso. tools/perf-bench: Add basic syscall benchmark.
2019. url: https://lore.kernel.org/patchwork/patch/1048777/.

[6] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael
Franz, Stefan Brunthaler, and Mathias Payer. “Control-Flow In-
tegrity: Precision, Security, and Performance.” In: ACM Computing
Surveys (2017).

[7] Byrnes, Jeffrey and Hoang, Thomas and Mehta, Nihal Nitin and
Cheng, Yuan. “A Modern Implementation of System Call Sequence
Based Host-based Intrusion Detection Systems.” In: TPS-ISA.
2020.

[8] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
“Automating Seccomp Filter Generation for Linux Applications.”
In: CCSW. 2021.

[9] Canella, Claudio and Kogler, Andreas and Giner, Lukas and Gruss,
Daniel and Schwarz, Michael. “Domain Page-Table Isolation.” In:
arXiv:2111.10876 (2021).

[10] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: CCS. 2010.

[11] Jonathan Corbet. Constant-action bitmaps for seccomp(). 2020.

[12] Crispan Cowan et al. “Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks.” In: USENIX Security.
1998.

https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://lore.kernel.org/patchwork/patch/1048777/

326 Chapter 11. Syscall-Flow-Integrity Protection

[13] Davi, Lucas and Sadeghi, Ahmad-Reza and Lehmann, Daniel and
Monrose, Fabian. “Stitching the Gadgets: On the Ineffectiveness of
Coarse-Grained Control-Flow Integrity Protection.” In: USENIX
Security Symposium. 2014.

[14] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fon-
seca, and Vasileios P. Kemerlis. “sysfilter: Automated System Call
Filtering for Commodity Software.” In: RAID. 2020.

[15] Jake Edge. A seccomp overview. 2015. url: https://lwn.net/

Articles/656307/.

[16] Jake Edge. System call filtering and no new privs. 2012. url: https:
//lwn.net/Articles/475678/.

[17] Forrest, S. and Hofmeyr, S.A. and Somayaji, A. and Longstaff, T.A.
“A sense of self for Unix processes.” In: S&P. 1996.

[18] Forrest, Stephanie and Hofmeyr, Steven and Somayaji, Anil. “The
Evolution of System-Call Monitoring.” In: ACSAC. 2008.

[19] Garvey, Thomas D. and Lunt, Teresa F. “Model-based intrusion
detection.” In: NCSC. 1991.

[20] Ge, Xinyang and Talele, Nirupama and Payer, Mathias and Jaeger,
Trent. “Fine-Grained Control-Flow Integrity for Kernel Software.”
In: Euro S&P. 2016.

[21] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. “Temporal System Call Specialization for Attack
Surface Reduction.” In: USENIX Security Symposium. 2020.

[22] Ghavamnia, Seyedhamed and Palit, Tapti and Mishra, Shachee
and Polychronakis, Michalis. “Confine: Automated System Call
Policy Generation for Container Attack Surface Reduction.” In:
RAID. 2020.

[23] Ghosh, Anup and Schwartzbard, Aaron and Schatz, Michael.
“Learning Program Behavior Profiles for Intrusion Detection.” In:
ID. 1999.

[24] Ghosh, Anup K. and Schwartzbard, Aaron. “A Study in Using
Neural Networks for Anomaly and Misuse Detection.” In: USENIX
Security Symposium. 1999.

[25] Giffin, Jonathon and Dagon, David and Jha, Somesh and Lee,
Wenke and Miller, Barton. “Environment-Sensitive Intrusion De-
tection.” In: RAID. 2005.

https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/475678/
https://lwn.net/Articles/475678/

References 327

[26] Giffin, Jonathon T and Jha, Somesh and Miller, Barton P. “Efficient
Context-Sensitive Intrusion Detection.” In: NDSS. 2004.

[27] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. “Out of Control: Overcoming Control-Flow Integrity.”
In: S&P. 2014.

[28] Michael Hind. “Pointer analysis: Haven’t we solved this problem
yet?” In: PASTE. 2001.

[29] Hofmeyr, Steven A. and Forrest, Stephanie and Somayaji, Anil. “In-
trusion Detection Using Sequences of System Calls.” In: J. Comput.
Secur. (1998).

[30] Tom Hromatka. seccomp and libseccomp performance improvements.
2018.

[31] Ilgun, K. and Kemmerer, R.A. and Porras, P.A. “State transi-
tion analysis: a rule-based intrusion detection approach.” In: TSE
(1995).

[32] Google Inc. Seccomp filter in Android O. 2017. url: https://

android-developers.googleblog.com/2017/07/seccomp-filter-

in-android-o.html.

[33] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. “Block Oriented Programming: Automating Data-Only
Attacks.” In: CCS. 2018.

[34] Vasileios Kemerlis. “Protecting Commodity Operating Systems
through Strong Kernel Isolation.” PhD thesis. Columbia University,
2015.

[35] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation.” In: USENIX
Security Symposium. 2014.

[36] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. “kGuard: Lightweight Kernel Protection against Return-
to-User Attacks.” In: USENIX Security Symposium. 2012.

[37] Kemmerer, Richard A and Vigna, Giovanni. “Intrusion detection:
a brief history and overview.” In: Computer (2002).

[38] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors.” In: ISCA. 2014.

https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html

328 Chapter 11. Syscall-Flow-Integrity Protection

[39] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution.” In: S&P. 2019.

[40] Kruegel, Christopher and Mutz, Darren and Valeur, Fredrik and
Vigna, Giovanni. “On the Detection of Anomalous System Call
Arguments.” In: ESORICS. 2003.

[41] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai
Zeng. “Loop-oriented programming: a new code reuse attack to
bypass modern defenses.” In: IEEE Trustcom/BigDataSE/ISPA.
2015.

[42] Lane, Terran and Brodley, Carla E. “Temporal Sequence Learning
and Data Reduction for Anomaly Detection.” In: TOPS (1999).

[43] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray,
and J. H. Hartman. “Protecting Against Unexpected System Calls.”
In: USENIX Security Symposium. 2005.

[44] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User
Space.” In: USENIX Security Symposium. 2018.

[45] Lunt, Teresa F. “Automated Audit Trail Analysis and Intrusion
Detection: A Survey.” In: NCSC. 1988.

[46] Lv, Shaohua and Wang, Jian and Yang, Yinqi and Liu, Jiqiang. “In-
trusion Prediction With System-Call Sequence-to-Sequence Model.”
In: IEEE Access (2018).

[47] Microsoft. Data Execution Prevention. 2021. url: https://docs.
microsoft.com/en- us/windows/win32/memory/data- execution-

prevention.

[48] Mutz, Darren and Valeur, Fredrik and Vigna, Giovanni and Kruegel,
Christopher. “Anomalous System Call Detection.” In: TOPS
(2006).

[49] Nergal. The advanced return-into-lib(c) explits: PaX case study.
2001.

[50] Pailoor, Shankara and Wang, Xinyu and Shacham, Hovav and Dillig,
Isil. “Automated Policy Synthesis for System Call Sandboxing.”
In: PACMPL (2020).

[51] Qiao, Y. and Xin, X.W. and Bin, Y. and Ge, S. “Anomaly intrusion
detection method based on HMM.” In: Electronics Letters (2002).

[52] Theo de Raadt. syscall call-from verification. 2019. url: https:

//lwn.net/Articles/806863/.

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://lwn.net/Articles/806863/
https://lwn.net/Articles/806863/

References 329

[53] Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Iso-
lation: Process Separation for Web Sites within the Browser.” In:
USENIX Security Symposium. 2019.

[54] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose,
Kevin Z. Snow, and Michalis Polychronakis. “Revisiting Browser
Security in the Modern Era: New Data-Only Attacks and Defenses.”
In: EuroS&P. 2017.

[55] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “RIDL: Rogue In-flight Data Load.” In: S&P. 2019.

[56] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications.” In: S&P. 2015.

[57] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling.” In: CCS. 2019.

[58] Sekar, R. and Bendre, M. and Dhurjati, D. and Bollineni, P. “A
fast automaton-based method for detecting anomalous program
behaviors.” In: S&P. 2001.

[59] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86).” In: CCS.
2007.

[60] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu,
and Josep Torrellas. “Draco: Architectural and Operating System
Support for System Call Security.” In: MICRO. 2020.

[61] Spengler, Brad. Recent ARM Security Improvements. 2013.

[62] state:AppArmor. state:AppArmor: Linux kernel security module.
2021. url: https://apparmor.net/.

[63] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK:
Eternal War in Memory.” In: S&P. 2013.

[64] Teng, H.S. and Chen, K. and Lu, S.C. “Adaptive real-time anomaly
detection using inductively generated sequential patterns.” In: S&P.
1990.

[65] Wagner, D. and Dean, R. “Intrusion detection via static analysis.”
In: S&P. 2001.

https://apparmor.net/

330 Chapter 11. Syscall-Flow-Integrity Protection

[66] Wagner, David and Soto, Paolo. “Mimicry Attacks on Host-Based
Intrusion Detection Systems.” In: CCS. 2002.

[67] C. Warrender, S. Forrest, and B. Pearlmutter. “Detecting intrusions
using system calls: alternative data models.” In: S&P. 1999.

[68] Wenke, Lee and Stolfo, S.J. and Mok, K.W. “A data mining frame-
work for building intrusion detection models.” In: S&P. 1999.

[69] Wespi, Andreas and Dacier, Marc and Debar, Hervé. “Intrusion
Detection Using Variable-Length Audit Trail Patterns.” In: RAID.
2000.

[70] Mozilla Wiki. Project Fission. 2019. url: https://wiki.mozilla.
org/Project_Fission.

[71] Mozilla Wiki. Security/Sandbox. 2019. url: https://wiki.mozilla.
org/Security/Sandbox.

[72] SELinux Wiki. FAQ — SELinux Wiki. 2009. url: http : / /

selinuxproject.org/w/?title=FAQ&oldid=729.

[73] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security Symposium. 2014.

[74] Zhengdao, Zhang and Zhumiao, Peng and Zhiping, Zhou. “The
Study of Intrusion Prediction Based on HsMM.” In: APSCC. 2008.

https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
http://selinuxproject.org/w/?title=FAQ&oldid=729
http://selinuxproject.org/w/?title=FAQ&oldid=729

	Title Page
	Affidavit
	Abstract
	Acknowledgements
	Table of Contents
	I Hardening the Kernel Against Unprivileged Attacks
	Introduction and Contribution
	Background
	State of the Art
	Conclusion

	II Publications
	Systematic Evaluation of Attacks and Defenses
	KASLR: Break It, Fix It, Repeat
	Evolution of Transient-Execution Attacks
	Evolution of Transient-Execution Defenses
	Automated Seccomp Filter Generation
	Domain Page-Table Isolation
	Syscall-Flow-Integrity Protection

