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Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient
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Transient-Execution Attacks
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Root Cause Analysis
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Spectre Tree
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Spectre: Defense Analysis
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More Details

More details in the paper

• New Meltdown variants

• Spectre mistraining strategies

• Defense categorization and performance analysis

• Gadget classification and prevalence analysis

• . . .

[Can+19b]

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss.

A Systematic Evaluation of Transient Execution Attacks and Defenses.

7 Claudio Canella



KASLR: Break It, Fix It, Repeat
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Reverse-Engineering Meltdown Hardware Mitigations

Hypothesis

Load is executed, returned value is zeroed out

Meltdown Attack

Performance Counter
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CPU Stalling Behavior

Vulnerable Mitigated Unaffected
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KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella



EchoLoad

mem[*0xffff ffff 8000 0000]

stall
stallstallstallstall 0
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Fake Load Address REsponse (FLARE)

Executable Non-Executable

code & data

code data

0xffff ffff 8000 0000

0xffff ffff a000 0000

0xffff ffff bfff ffff
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FLARE
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More Details

More details in the paper

• EchoLoad from and on SGX

• Meltdown in JavaScript on 32-bit Systems

• FLARE for Kernel modules, vmalloc, . . .

• . . .

[Can+20]

Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, Daniel

Gruss.

KASLR: Break It, Fix It, Repeat.
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Linux Seccomp

Kernel Self-Protection Project

The “seccomp” system provides an opt-in feature made available to userspace

, which

provides a way to reduce the number of kernel entry points available to a running

process. This limits the breadth of kernel code that can be reached, possibly reducing

the availability of a given bug to an attack.
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Seccomp Limitations

Effort
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Automating Seccomp Filter Generation for Linux
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Security Evaluation
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More Details

More details in the paper

• Implementation details

• Information on overapproximation

• Detailed evaluation

• . . .

[Can+21b]

Claudio Canella, Mario Werner, Daniel Gruss, Michael Schwarz.

Automating Seccomp Filter Generation for Linux Applications.
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Syscall-Flow-Integrity Protection

State Machine

Origins Enforcement

SFIP
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State Machine Analysis

Application #States Average Transitions

busybox 23.52 15.99

coreutils 26.64 16.66

pwgen 18 13.56

muraster 29 18.89

nginx 107 74.05

ffmpeg 55 49.07

memcached 86 43.16

mutool 53 32.26
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Origin Analysis

Application Total #Offsets Avg #Offsets

busybox 102.64 3.75

coreutils 116.71 4.42

pwgen 84 4.42

muraster 193 4.6

nginx 318 3.0

ffmpeg 279 4.98

memcached 317 3.69

mutool 278 4.15
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Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp
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More Details

More details in the paper

• Implementation details

• Extensive security discussion

• Mimicry attacks

• . . .

[Can+22]

Claudio Canella, Sebastian Dorn, Daniel Gruss, Michael Schwarz.

SFIP: Coarse-Grained Syscall-Flow-Integrity Protection in Modern Systems.
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Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks
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