
Hardening the Kernel Against Unprivileged

Attacks

Claudio Canella
Graz University of Technology

November 9, 2022

A Systematic Evaluation of Transient Execution

Attacks and Defenses

Claudio Canella
Graz University of Technology

Jo Van Bulck
imec-DistriNet, KU Leuven

Michael Schwarz
Graz University of Technology

Moritz Lipp
Graz University of Technology

Benjamin von Berg
Graz University of Technology

Philipp Ortner
Graz University of Technology

Frank Piessens
imec-DistriNet, KU Leuven

Dmitry Evtyushkin
College of William and Mary

Daniel Gruss
Graz University of Technology

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient Execution

CPUs optimize performance through

• out-of-order execution

• speculative execution

What if CPU was wrong?

→ Roll back to mistake

Squashed instructions are called transient

2 Claudio Canella

Transient-Execution Attacks

3 Claudio Canella

Root Cause Analysis

operation #n

re
ti
re

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly
architectural transient execution

exception raise

time

Meltdown

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly
architectural transient execution

flush
pipeline

time

Spectre

4 Claudio Canella

Spectre Tree

Transient

cause?

5 Claudio Canella

Spectre Tree

Transient

cause?

Spectre-type

prediction

5 Claudio Canella

Spectre Tree

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

prediction

5 Claudio Canella

Spectre Tree

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

Cross-address-space

Same-address-space

prediction

5 Claudio Canella

Spectre Tree

Transient

cause?

Spectre-type

microarchitec-

tural buffer
Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

prediction

5 Claudio Canella

Spectre: Defense Analysis

Attack

Defense

In
vi
si
S
p
ec

S
af
eS
p
ec

D
A
W
G

R
S
B
S
tu
ffi
ng

R
et
p
ol
in
e

P
oi
so
n
V
al
ue

In
de
x
M
as
ki
ng

S
it
e
Is
ol
at
io
n

S
L
H

Y
S
N
B

IB
R
S

S
T
IP
B

IB
P
B

S
er
ia
liz
at
io
n

T
ai
nt

T
ra
ck
in
g

T
im
er

R
ed
uc
ti
on

S
lo
th

S
S
B
D
/S
S
B
B

Intel

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

ARM

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

AMD

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not mitigated (), theoretically

mitigated (), theoretically impeded (), not theoretically impeded (), or out of scope ().

6 Claudio Canella

More Details

More details in the paper

• New Meltdown variants

• Spectre mistraining strategies

• Defense categorization and performance analysis

• Gadget classification and prevalence analysis

• . . .

[Can+19b]

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss.

A Systematic Evaluation of Transient Execution Attacks and Defenses.

7 Claudio Canella

KASLR: Break It, Fix It, Repeat

Claudio Canella
Graz University of Technology

Michael Schwarz
Graz University of Technology

Martin Haubenwallner
Graz University of Technology

Martin Schwarzl
Graz University of Technology

Daniel Gruss
Graz University of Technology

Reverse-Engineering Meltdown Hardware Mitigations

Hypothesis

Load is executed, returned value is zeroed out

Meltdown Attack

Performance Counter

8 Claudio Canella

Reverse-Engineering Meltdown Hardware Mitigations

Hypothesis

Load is executed, returned value is zeroed out

Meltdown Attack

Performance Counter

8 Claudio Canella

Reverse-Engineering Meltdown Hardware Mitigations

Hypothesis

Load is executed, returned value is zeroed out

Meltdown Attack Performance Counter

8 Claudio Canella

CPU Stalling Behavior

Vulnerable Mitigated Unaffected
0%

50%

100%
80 82 90

80 82
100100 100 100

user kernel not present

9 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

KASLR

Boot 1

Without KASLR

Boot 2

Boot 3

With KASLR

10 Claudio Canella

EchoLoad

mem[*0xffff ffff 8000 0000]

stall
stallstallstallstall 0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 8000 0000]

stall

stallstallstallstall 0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 8020 0000]

stall

stall

stallstallstall 0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 8040 0000]

stall
stall

stall

stallstall 0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 8060 0000]

stall
stallstall

stall

stall 0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 8080 0000]

stall
stallstallstall

stall

0

11 Claudio Canella

EchoLoad

mem[*0xffff ffff 80a0 0000]

stall
stallstallstallstall

0

11 Claudio Canella

Fake Load Address REsponse (FLARE)

Executable Non-Executable

code & data

code data

0xffff ffff 8000 0000

0xffff ffff a000 0000

0xffff ffff bfff ffff

12 Claudio Canella

Fake Load Address REsponse (FLARE)

Executable Non-Executable

code & data

code data

0xffff ffff 8000 0000

0xffff ffff a000 0000

0xffff ffff bfff ffff

12 Claudio Canella

Fake Load Address REsponse (FLARE)

Executable Non-Executable

code & data

code data

0xffff ffff 8000 0000

0xffff ffff a000 0000

0xffff ffff bfff ffff

12 Claudio Canella

FLARE

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

S
ta
lls

[%
]

with FLARE without FLARE

EchoLoad

-16 -8 0 8 16 24 32 40
100

200

300

400

500

Kernel offset [MB]

P
re
fe
tc
h
ti
m
e

with FLARE without FLARE

Prefetch [Gru+16]

-16 -8 0 8 16 24 32 40

0

10

20

30

Kernel offset [MB]

R
ep
et
it
io
n
s

with FLARE without FLARE

Data Bounce [Sch+19]

-16 -8 0 8 16 24 32 40

2,900

2,920

2,940

2,960

Kernel offset [MB]

P
ag
e-
fa
u
lt
ti
m
e

with FLARE without FLARE

Double Page Fault [HWH13]

-16 -8 0 8 16 24 32 40

260

280

300

320

340

Kernel offset [MB]

T
S
X
ti
m
e

with FLARE without FLARE

DrK [JLK16]

-16 -8 0 8 16 24 32 40
0

50

100

Kernel offset [MB]

W
T
F
su
cc
es
s
[%

]

with FLARE without FLARE

Fallout [Can+19a]

13 Claudio Canella

More Details

More details in the paper

• EchoLoad from and on SGX

• Meltdown in JavaScript on 32-bit Systems

• FLARE for Kernel modules, vmalloc, . . .

• . . .

[Can+20]

Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, Daniel

Gruss.

KASLR: Break It, Fix It, Repeat.

14 Claudio Canella

Linux Seccomp

Kernel Self-Protection Project

The “seccomp” system provides an opt-in feature made available to userspace

, which

provides a way to reduce the number of kernel entry points available to a running

process. This limits the breadth of kernel code that can be reached, possibly reducing

the availability of a given bug to an attack.

15 Claudio Canella

Linux Seccomp

Kernel Self-Protection Project

The “seccomp” system provides an opt-in feature made available to userspace, which

provides a way to reduce the number of kernel entry points available to a running

process.

This limits the breadth of kernel code that can be reached, possibly reducing

the availability of a given bug to an attack.

15 Claudio Canella

Linux Seccomp

Kernel Self-Protection Project

The “seccomp” system provides an opt-in feature made available to userspace, which

provides a way to reduce the number of kernel entry points available to a running

process. This limits the breadth of kernel code that can be reached

, possibly reducing

the availability of a given bug to an attack.

15 Claudio Canella

Linux Seccomp

Kernel Self-Protection Project

The “seccomp” system provides an opt-in feature made available to userspace, which

provides a way to reduce the number of kernel entry points available to a running

process. This limits the breadth of kernel code that can be reached, possibly reducing

the availability of a given bug to an attack.

15 Claudio Canella

Seccomp Limitations

Effort

16 Claudio Canella

Seccomp Limitations

Effort TOCTOU

16 Claudio Canella

Seccomp Limitations

Effort TOCTOU Stateless

16 Claudio Canella

Seccomp Limitations

Effort TOCTOU Stateless

16 Claudio Canella

Automating Seccomp Filter Generation for Linux

Applications

Claudio Canella
Graz University of Technology

Mario Werner
Graz University of Technology

Daniel Gruss
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center for Information Security

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer

Annotated

Binary

File(s)

17 Claudio Canella

Chestnut

P1: Static Analysis

Source

Source

Analyzer

Binary

Binary

Analyzer

Annotated

Binary

File(s)

P2: Dynamic Refinement

Dynamic

Analyzer Annotated

Binary

File(s)

17 Claudio Canella

Security Evaluation

Syscalls exec mprotect CVEs
0%

50%

100% 87

50
61 64

83 78

0

62

Sourcalyzer Binalyzer

18 Claudio Canella

More Details

More details in the paper

• Implementation details

• Information on overapproximation

• Detailed evaluation

• . . .

[Can+21b]

Claudio Canella, Mario Werner, Daniel Gruss, Michael Schwarz.

Automating Seccomp Filter Generation for Linux Applications.

19 Claudio Canella

SFIP: Coarse-Grained Syscall-Flow-Integrity

Protection in Modern Systems

Claudio Canella
Graz University of Technology

Sebastian Dorn
Graz University of Technology

Daniel Gruss
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center for Information Security

Syscall-Flow-Integrity Protection

State Machine

Origins Enforcement

SFIP

20 Claudio Canella

Syscall-Flow-Integrity Protection

State Machine Origins

Enforcement

SFIP

20 Claudio Canella

Syscall-Flow-Integrity Protection

State Machine Origins Enforcement

SFIP

20 Claudio Canella

Syscall-Flow-Integrity Protection

State Machine Origins Enforcement

SFIP

20 Claudio Canella

State Machine Analysis

Application #States Average Transitions

busybox 23.52 15.99

coreutils 26.64 16.66

pwgen 18 13.56

muraster 29 18.89

nginx 107 74.05

ffmpeg 55 49.07

memcached 86 43.16

mutool 53 32.26

21 Claudio Canella

State Machine Analysis

Application #States Average Transitions

busybox 23.52 15.99

coreutils 26.64 16.66

pwgen 18 13.56

muraster 29 18.89

nginx 107 74.05

ffmpeg 55 49.07

memcached 86 43.16

mutool 53 32.26

21 Claudio Canella

Origin Analysis

Application Total #Offsets Avg #Offsets

busybox 102.64 3.75

coreutils 116.71 4.42

pwgen 84 4.42

muraster 193 4.6

nginx 318 3.0

ffmpeg 279 4.98

memcached 317 3.69

mutool 278 4.15

22 Claudio Canella

Origin Analysis

Application Total #Offsets Avg #Offsets

busybox 102.64 3.75

coreutils 116.71 4.42

pwgen 84 4.42

muraster 193 4.6

nginx 318 3.0

ffmpeg 279 4.98

memcached 317 3.69

mutool 278 4.15

22 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

Return-Oriented Programming

Return-Oriented Programming

• uses exisiting code to exploit a program

• jumps to parts of functions (gadgets)

• chains gadgets together for an exploit

SFIP restricts ROP chains via

• syscall transitions → not every sequence is possible

• syscall origins → not every location is valid

Conclusion

SFIP imposes more significant constraints on control-flow-hijacking

attacks than seccomp

23 Claudio Canella

More Details

More details in the paper

• Implementation details

• Extensive security discussion

• Mimicry attacks

• . . .

[Can+22]

Claudio Canella, Sebastian Dorn, Daniel Gruss, Michael Schwarz.

SFIP: Coarse-Grained Syscall-Flow-Integrity Protection in Modern Systems.

24 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

Contributions

• Deepened understanding of transient-execution attacks

→ Found new attack variants

→ Proposed widely-adopted naming scheme

→ Highlighted insufficient defenses

• Hardened kernel against microarchitectural KASLR breaks

• Reduced the exposed attack surface of the kernel

→ Automated Seccomp

→ Syscall-Flow-Integrity Protection

→ Enabled complex argument checks

25 Claudio Canella

My PhD in Numbers

16

1 13

1 14

16 1

13

1 14

16 1 13

1 14

16 1 13

1

14

16 1 13

1 14

Hardening the Kernel Against Unprivileged

Attacks

Claudio Canella
Graz University of Technology

November 9, 2022

References

[Can+19a] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi,

F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and Y. Yarom. Fallout: Leaking

Data on Meltdown-resistant CPUs. In: CCS. 2019.

[Can+19b] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,

F. Piessens, D. Evtyushkin, and D. Gruss. A Systematic Evaluation of Transient

Execution Attacks and Defenses. In: USENIX Security Symposium. Extended

classification tree and PoCs at https://transient.fail/. 2019.

[Can+20] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss. KASLR:

Break It, Fix It, Repeat. In: AsiaCCS. 2020.

[Can+21a] C. Canella, A. Kogler, L. Giner, D. Gruss, and M. Schwarz. Domain Page-Table

Isolation. In: arXiv:2111.10876 (2021).

28 Claudio Canella

[Can+21b] C. Canella, M. Werner, D. Gruss, and M. Schwarz. Automating Seccomp Filter

Generation for Linux Applications. In: CCSW. 2021.

[Can+22] C. Canella, S. Dorn, D. Gruss, and M. Schwarz. SFIP: Coarse-Grained

Syscall-Flow-Integrity Protection in Modern Systems. In: arXiv:2202.13716

(2022).

[Gru+16] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch Side-Channel

Attacks: Bypassing SMAP and Kernel ASLR. In: CCS. 2016.

[HWH13] R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel Attacks against

Kernel Space ASLR. In: S&P. 2013.

[JLK16] Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space Layout

Randomization with Intel TSX. In: CCS. 2016.

[Sch+19] M. Schwarz, C. Canella, L. Giner, and D. Gruss. Store-to-Leak Forwarding:

Leaking Data on Meltdown-resistant CPUs. In: arXiv:1905.05725 (2019).

29 Claudio Canella

	References

